

AdaNet documentation

AdaNet: Fast and flexible AutoML with learning guarantees.

 [image: adanet_tangram_logo]

 adanet

adanet

AdaNet: Fast and flexible AutoML with learning guarantees.

Estimators

High-level APIs for training, evaluating, predicting, and serving AdaNet model.

AutoEnsembleEstimator

	
class adanet.AutoEnsembleEstimator(head, candidate_pool, max_iteration_steps, logits_fn=None, adanet_lambda=0.0, evaluator=None, metric_fn=None, force_grow=False, adanet_loss_decay=0.9, worker_wait_timeout_secs=7200, model_dir=None, config=None)

	Bases: adanet.core.estimator.Estimator

A tf.estimator.Estimator that learns to ensemble models.

Specifically, it learns to ensemble models from a candidate pool using the
Adanet algorithm.

A simple example of learning to ensemble linear and neural network
models.

import adanet
import tensorflow as tf

feature_columns = ...

head = tf.contrib.estimator.multi_class_head(n_classes=3)

Learn to ensemble linear and DNN models.
estimator = adanet.AutoEnsembleEstimator(
 head=head,
 candidate_pool=[
 tf.estimator.LinearEstimator(
 head=head,
 feature_columns=feature_columns,
 optimizer=tf.train.FtrlOptimizer(...)),
 tf.estimator.DNNEstimator(
 head=head,
 feature_columns=feature_columns,
 optimizer=tf.train.ProximalAdagradOptimizer(...),
 hidden_units=[1000, 500, 100])],
 max_iteration_steps=50)

Input builders
def input_fn_train:
 # Returns tf.data.Dataset of (x, y) tuple where y represents label's
 # class index.
 pass
def input_fn_eval:
 # Returns tf.data.Dataset of (x, y) tuple where y represents label's
 # class index.
 pass
def input_fn_predict:
 # Returns tf.data.Dataset of (x, None) tuple.
 pass
estimator.train(input_fn=input_fn_train, steps=100)
metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10)
predictions = estimator.predict(input_fn=input_fn_predict)

	Parameters

	
	head – A tf.contrib.estimator.Head instance for computing loss and
evaluation metrics for every candidate.

	candidate_pool – List of tf.estimator.Estimator objects that are
candidates to ensemble at each iteration. The order does not directly
affect which candidates will be included in the final ensemble.

	max_iteration_steps – Total number of steps for which to train candidates per
iteration. If OutOfRange or StopIteration occurs in the middle,
training stops before max_iteration_steps steps.

	logits_fn – A function for fetching the subnetwork logits from a
tf.estimator.EstimatorSpec, which should obey the following
signature:

	Args: Can only have following argument:
- estimator_spec: The candidate’s tf.estimator.EstimatorSpec.

	Returns: Logits tf.Tensor or dict of string to logits
tf.Tensor (for multi-head) for the candidate subnetwork
extracted from the given estimator_spec. When None, it will
default to returning estimator_spec.predictions when they are a
tf.Tensor or the tf.Tensor for the key ‘logits’ when
they are a dict of string to tf.Tensor.

	adanet_lambda – See adanet.Estimator.

	evaluator – See adanet.Estimator.

	metric_fn – See adanet.Estimator.

	force_grow – See adanet.Estimator.

	adanet_loss_decay – See adanet.Estimator.

	worker_wait_timeout_secs – See adanet.Estimator.

	model_dir – See adanet.Estimator.

	config – See adanet.Estimator.

	Returns

	An adanet.AutoEnsembleEstimator instance.

	Raises

	ValueError – If any of the candidates in candidate_pool are not
tf.estimator.Estimator instances.

	
eval_dir(name=None)

	Shows the directory name where evaluation metrics are dumped.

	Parameters

	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.

	Returns

	A string which is the path of directory contains evaluation metrics.

	
evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)

	Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data.
Evaluates until:
- steps batches are processed, or
- input_fn raises an end-of-input exception (tf.errors.OutOfRangeError
or
StopIteration).

	Parameters

	
	input_fn – A function that constructs the input data for evaluation. See
[Premade Estimators](
https://tensorflow.org/guide/premade#create_input_functions)
for more information. The
function should construct and return one of the following: * A
tf.data.Dataset object: Outputs of Dataset object must be a tuple
(features, labels) with same constraints as below. * A tuple
(features, labels): Where features is a tf.Tensor or a dictionary
of string feature name to Tensor and labels is a Tensor or a
dictionary of string label name to Tensor. Both features and
labels are consumed by model_fn. They should satisfy the expectation
of model_fn from inputs.

	steps – Number of steps for which to evaluate model. If None, evaluates
until input_fn raises an end-of-input exception.

	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the evaluation call.

	checkpoint_path – Path of a specific checkpoint to evaluate. If None, the
latest checkpoint in model_dir is used. If there are no checkpoints
in model_dir, evaluation is run with newly initialized Variables
instead of ones restored from checkpoint.

	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.

	Returns

	A dict containing the evaluation metrics specified in model_fn keyed by
name, as well as an entry global_step which contains the value of the
global step for which this evaluation was performed. For canned
estimators, the dict contains the loss (mean loss per mini-batch) and
the average_loss (mean loss per sample). Canned classifiers also return
the accuracy. Canned regressors also return the label/mean and the
prediction/mean.

	Raises

	
	ValueError – If steps <= 0.

	ValueError – If no model has been trained, namely model_dir, or the
given checkpoint_path is empty.

	
export_saved_model(export_dir_base, serving_input_receiver_fn, assets_extra=None, as_text=False, checkpoint_path=None)

	Exports inference graph as a SavedModel into the given dir.

For a detailed guide, see
[Using SavedModel with Estimators](https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators).

This method builds a new graph by first calling the
serving_input_receiver_fn to obtain feature Tensor`s, and then calling
this `Estimator’s model_fn to generate the model graph based on those
features. It restores the given checkpoint (or, lacking that, the most
recent checkpoint) into this graph in a fresh session. Finally it creates
a timestamped export directory below the given export_dir_base, and writes
a SavedModel into it containing a single tf.MetaGraphDef saved from this
session.

The exported MetaGraphDef will provide one SignatureDef for each
element of the export_outputs dict returned from the model_fn, named
using
the same keys. One of these keys is always
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
indicating which
signature will be served when a serving request does not specify one.
For each signature, the outputs are provided by the corresponding
tf.estimator.export.ExportOutput`s, and the inputs are always the input
receivers provided by
the `serving_input_receiver_fn.

Extra assets may be written into the SavedModel via the assets_extra
argument. This should be a dict, where each key gives a destination path
(including the filename) relative to the assets.extra directory. The
corresponding value gives the full path of the source file to be copied.
For example, the simple case of copying a single file without renaming it
is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

	Parameters

	
	export_dir_base – A string containing a directory in which to create
timestamped subdirectories containing exported `SavedModel`s.

	serving_input_receiver_fn – A function that takes no argument and returns a
tf.estimator.export.ServingInputReceiver or
tf.estimator.export.TensorServingInputReceiver.

	assets_extra – A dict specifying how to populate the assets.extra directory
within the exported SavedModel, or None if no extra assets are
needed.

	as_text – whether to write the SavedModel proto in text format.

	checkpoint_path – The checkpoint path to export. If None (the default),
the most recent checkpoint found within the model directory is chosen.

	Returns

	The string path to the exported directory.

	Raises

	
	ValueError – if no serving_input_receiver_fn is provided, no

	export_outputs are provided, or no checkpoint can be found.

	
export_savedmodel(export_dir_base, serving_input_receiver_fn, assets_extra=None, as_text=False, checkpoint_path=None, strip_default_attrs=False)

	Exports inference graph as a SavedModel into the given dir.

Note that export_to_savedmodel will be renamed to export_saved_model
in TensorFlow 2.0. At that time, export_to_savedmodel without the
additional underscore will be available only through tf.compat.v1.

Please see tf.estimator.Estimator.export_saved_model for more information.

	There is one additional arg versus the new method:

	
	strip_default_attrs: This parameter is going away in TF 2.0, and

	the new behavior will automatically strip all default attributes.
Boolean. If True, default-valued attributes will be
removed from the `NodeDef`s. For a detailed guide, see [Stripping
Default-Valued Attributes](
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes).

	
get_variable_names()

	Returns list of all variable names in this model.

	Returns

	List of names.

	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.

	
get_variable_value(name)

	Returns value of the variable given by name.

	Parameters

	name – string or a list of string, name of the tensor.

	Returns

	Numpy array - value of the tensor.

	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.

	
latest_checkpoint()

	Finds the filename of the latest saved checkpoint file in model_dir.

	Returns

	The full path to the latest checkpoint or None if no checkpoint was
found.

	
model_fn

	Returns the model_fn which is bound to self.params.

	Returns

	def model_fn(features, labels, mode, config)

	Return type

	The model_fn with following signature

	
predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None, yield_single_examples=True)

	Yields predictions for given features.

Please note that interleaving two predict outputs does not work. See:
[issue/20506](
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517)

	Parameters

	
	input_fn – A function that constructs the features. Prediction continues
until input_fn raises an end-of-input exception
(tf.errors.OutOfRangeError or StopIteration).
See [Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:

	A tf.data.Dataset object: Outputs of Dataset object must have
same constraints as below.

	features: A tf.Tensor or a dictionary of string feature name to
Tensor. features are consumed by model_fn. They should satisfy
the expectation of model_fn from inputs.

	A tuple, in which case the first item is extracted as features.

	predict_keys – list of str, name of the keys to predict. It is used if
the tf.estimator.EstimatorSpec.predictions is a dict. If
predict_keys is used then rest of the predictions will be filtered
from the dictionary. If None, returns all.

	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the prediction call.

	checkpoint_path – Path of a specific checkpoint to predict. If None, the
latest checkpoint in model_dir is used. If there are no checkpoints
in model_dir, prediction is run with newly initialized Variables
instead of ones restored from checkpoint.

	yield_single_examples – If False, yields the whole batch as returned by
the model_fn instead of decomposing the batch into individual
elements. This is useful if model_fn returns some tensors whose first
dimension is not equal to the batch size.

	Yields

	Evaluated values of predictions tensors.

	Raises

	
	ValueError – Could not find a trained model in model_dir.

	ValueError – If batch length of predictions is not the same and
yield_single_examples is True.

	ValueError – If there is a conflict between predict_keys and
predictions. For example if predict_keys is not None but
tf.estimator.EstimatorSpec.predictions is not a dict.

	
train(input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)

	Trains a model given training data input_fn.

	Parameters

	
	input_fn – A function that provides input data for training as minibatches.
See [Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following: * A
tf.data.Dataset object: Outputs of Dataset object must be a tuple
(features, labels) with same constraints as below. * A tuple
(features, labels): Where features is a tf.Tensor or a dictionary
of string feature name to Tensor and labels is a Tensor or a
dictionary of string label name to Tensor. Both features and
labels are consumed by model_fn. They should satisfy the expectation
of model_fn from inputs.

	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the training loop.

	steps – Number of steps for which to train the model. If None, train
forever or train until input_fn generates the tf.errors.OutOfRange
error or StopIteration exception. steps works incrementally. If you
call two times train(steps=10) then training occurs in total 20 steps.
If OutOfRange or StopIteration occurs in the middle, training stops
before 20 steps. If you don’t want to have incremental behavior please
set max_steps instead. If set, max_steps must be None.

	max_steps – Number of total steps for which to train model. If None,
train forever or train until input_fn generates the
tf.errors.OutOfRange error or StopIteration exception. If set,
steps must be None. If OutOfRange or StopIteration occurs in the
middle, training stops before max_steps steps. Two calls to
train(steps=100) means 200 training iterations. On the other hand, two
calls to train(max_steps=100) means that the second call will not do
any iteration since first call did all 100 steps.

	saving_listeners – list of CheckpointSaverListener objects. Used for
callbacks that run immediately before or after checkpoint savings.

	Returns

	self, for chaining.

	Raises

	
	ValueError – If both steps and max_steps are not None.

	ValueError – If either steps or max_steps <= 0.

Estimator

	
class adanet.Estimator(head, subnetwork_generator, max_iteration_steps, mixture_weight_type='scalar', mixture_weight_initializer=None, warm_start_mixture_weights=False, adanet_lambda=0.0, adanet_beta=0.0, evaluator=None, report_materializer=None, use_bias=False, metric_fn=None, force_grow=False, replicate_ensemble_in_training=False, adanet_loss_decay=0.9, worker_wait_timeout_secs=7200, model_dir=None, report_dir=None, config=None, **kwargs)

	Bases: tensorflow.python.estimator.estimator.Estimator

The AdaNet algorithm implemented as a tf.estimator.Estimator.

AdaNet is as defined in the paper: https://arxiv.org/abs/1607.01097.

The AdaNet algorithm uses a weak learning algorithm to iteratively generate a
set of candidate subnetworks that attempt to minimize the loss function
defined in Equation (4) as part of an ensemble. At the end of each iteration,
the best candidate is chosen based on its ensemble’s complexity-regularized
train loss. New subnetworks are allowed to use any subnetwork weights within
the previous iteration’s ensemble in order to improve upon them. If the
complexity-regularized loss of the new ensemble, as defined in Equation (4),
is less than that of the previous iteration’s ensemble, the AdaNet algorithm
continues onto the next iteration.

AdaNet attempts to minimize the following loss function to learn the mixture
weights ‘w’ of each subnetwork ‘h’ in the ensemble with differentiable
convex non-increasing surrogate loss function Phi:

Equation (4):

\[F(w) = \frac{1}{m} \sum_{i=1}^{m} \Phi \left(\sum_{j=1}^{N}w_jh_j(x_i),
y_i \right) + \sum_{j=1}^{N} \left(\lambda r(h_j) + \beta \right) |w_j|\]

with \(\lambda >= 0\) and \(\beta >= 0\).

This implementation uses an adanet.subnetwork.Generator as its weak
learning algorithm for generating candidate subnetworks. These are trained in
parallel using a single graph per iteration. At the end of each iteration, the
estimator saves the sub-graph of the best subnetwork ensemble and its weights
as a separate checkpoint. At the beginning of the next iteration, the
estimator imports the previous iteration’s frozen graph and adds ops for the
next candidates as part of a new graph and session. This allows the estimator
have the performance of Tensorflow’s static graph constraint (minus the
performance hit of reconstructing a graph between iterations), while having
the flexibility of having a dynamic graph.

NOTE: Subclassing tf.estimator.Estimator is only necessary to work
with tf.estimator.train_and_evaluate() which asserts that the estimator
argument is a tf.estimator.Estimator subclass. However, all training
is delegated to a separate tf.estimator.Estimator instance. It is
responsible for supporting both local and distributed training. As such, the
adanet.Estimator is only responsible for bookkeeping across
iterations.

	Parameters

	
	head – A tf.contrib.estimator.Head instance for computing loss and
evaluation metrics for every candidate.

	subnetwork_generator – The adanet.subnetwork.Generator which defines
the candidate subnetworks to train and evaluate at every AdaNet iteration.

	max_iteration_steps – Total number of steps for which to train candidates per
iteration. If OutOfRange or StopIteration occurs in the
middle, training stops before max_iteration_steps steps.

	mixture_weight_type – The adanet.MixtureWeightType defining which
mixture weight type to learn in the linear combination of subnetwork
outputs:

	SCALAR: creates a rank 0 tensor mixture weight . It performs
an element- wise multiplication with its subnetwork’s logits. This
mixture weight is the simplest to learn, the quickest to train, and
most likely to generalize well.

	VECTOR: creates a tensor with shape [k] where k is the
ensemble’s logits dimension as defined by head. It is similar to
SCALAR in that it performs an element-wise multiplication with its
subnetwork’s logits, but is more flexible in learning a subnetworks’s
preferences per class.

	MATRIX: creates a tensor of shape [a, b] where a is the
number of outputs from the subnetwork’s last_layer and b is the
number of outputs from the ensemble’s logits. This weight
matrix-multiplies the subnetwork’s last_layer. This mixture weight
offers the most flexibility and expressivity, allowing subnetworks to
have outputs of different dimensionalities. However, it also has the
most trainable parameters (a*b), and is therefore the most sensitive
to learning rates and regularization.

	mixture_weight_initializer – The initializer for mixture_weights. When
None, the default is different according to mixture_weight_type:

	SCALAR: initializes to 1/N where N is the number of
subnetworks in the ensemble giving a uniform average.

	VECTOR: initializes each entry to 1/N where N is the number
of subnetworks in the ensemble giving a uniform average.

	MATRIX: uses tf.zeros_initializer().

	warm_start_mixture_weights – Whether, at the beginning of an iteration, to
initialize the mixture weights of the subnetworks from the previous
ensemble to their learned value at the previous iteration, as opposed to
retraining them from scratch. Takes precedence over the value for
mixture_weight_initializer for subnetworks from previous iterations.

	adanet_lambda – Float multiplier ‘lambda’ for applying L1 regularization to
subnetworks’ mixture weights ‘w’ in the ensemble proportional to their
complexity. See Equation (4) in the AdaNet paper.

	adanet_beta – Float L1 regularization multiplier ‘beta’ to apply equally to
all subnetworks’ weights ‘w’ in the ensemble regardless of their
complexity. See Equation (4) in the AdaNet paper.

	evaluator – An adanet.Evaluator for candidate selection after all
subnetworks are done training. When None, candidate selection uses a
moving average of their adanet.Ensemble AdaNet loss during
training instead. In order to use the AdaNet algorithm as described in
[Cortes et al., ‘17], the given adanet.Evaluator must be created
with the same dataset partition used during training. Otherwise, this
framework will perform AdaNet.HoldOut which uses a holdout set for
candidate selection, but does not benefit from learning guarantees.

	report_materializer – An adanet.ReportMaterializer. Its reports are
made available to the subnetwork_generator at the next iteration, so
that it can adapt its search space. When None, the
subnetwork_generator generate_candidates() method will receive
empty Lists for their previous_ensemble_reports and all_reports
arguments.

	use_bias – Whether to add a bias term to the ensemble’s logits. Adding a bias
allows the ensemble to learn a shift in the data, often leading to more
stable training and better predictions.

	metric_fn – A function for adding custom evaluation metrics, which should
obey the following signature:

	Args:
Can only have the following three arguments in any order:
- predictions: Predictions Tensor or dict of Tensor created by

given head.

	features: Input dict of Tensor objects created by input_fn
which is given to estimator.evaluate as an argument.

	labels: Labels Tensor or dict of Tensor (for multi-head)
created by input_fn which is given to estimator.evaluate as an
argument.

	Returns: Dict of metric results keyed by name. Final metrics are a
union of this and head’s existing metrics. If there is a name
conflict between this and head`s existing metrics, this will override
the existing one. The values of the dict are the results of calling a
metric function, namely a `(metric_tensor, update_op) tuple.

	force_grow – Boolean override that forces the ensemble to grow by one
subnetwork at the end of each iteration. Normally at the end of each
iteration, AdaNet selects the best candidate ensemble according to its
performance on the AdaNet objective. In some cases, the best ensemble is
the previous_ensemble as opposed to one that includes a newly trained
subnetwork. When True, the algorithm will not select the
previous_ensemble as the best candidate, and will ensure that after n
iterations the final ensemble is composed of n subnetworks.

	replicate_ensemble_in_training – Whether to rebuild the frozen subnetworks of
the ensemble in training mode, which can change the outputs of the frozen
subnetworks in the ensemble. When False and during candidate training,
the frozen subnetworks in the ensemble are in prediction mode, so
training-only ops like dropout are not applied to them. When True and
training the candidates, the frozen subnetworks will be in training mode
as well, so they will apply training-only ops like dropout. This argument
is useful for regularizing learning mixture weights, or for making
training-only side inputs available in subsequent iterations. For most
use-cases, this should be False.

	adanet_loss_decay – Float decay for the exponential-moving-average of the
AdaNet objective throughout training. This moving average is a data-
driven way tracking the best candidate with only the training set.

	worker_wait_timeout_secs – Float number of seconds for workers to wait for
chief to prepare the next iteration during distributed training. This is
needed to prevent workers waiting indefinitely for a chief that may have
crashed or been turned down. When the timeout is exceeded, the worker
exits the train loop. In situations where the chief job is much slower
than the worker jobs, this timeout should be increased.

	model_dir – Directory to save model parameters, graph and etc. This can also
be used to load checkpoints from the directory into a estimator to
continue training a previously saved model.

	report_dir – Directory where the adanet.subnetwork.MaterializedReport`s
materialized by `report_materializer would be saved. If
report_materializer is None, this will not save anything. If None or
empty string, defaults to “<model_dir>/report”.

	config – RunConfig object to configure the runtime settings.

	**kwargs – Extra keyword args passed to the parent.

	Returns

	An Estimator instance.

	Raises

	
	ValueError – If subnetwork_generator is None.

	ValueError – If max_iteration_steps is <= 0.

	
eval_dir(name=None)

	Shows the directory name where evaluation metrics are dumped.

	Parameters

	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.

	Returns

	A string which is the path of directory contains evaluation metrics.

	
evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)

	Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data.
Evaluates until:
- steps batches are processed, or
- input_fn raises an end-of-input exception (tf.errors.OutOfRangeError
or
StopIteration).

	Parameters

	
	input_fn – A function that constructs the input data for evaluation. See
[Premade Estimators](
https://tensorflow.org/guide/premade#create_input_functions)
for more information. The
function should construct and return one of the following: * A
tf.data.Dataset object: Outputs of Dataset object must be a tuple
(features, labels) with same constraints as below. * A tuple
(features, labels): Where features is a tf.Tensor or a dictionary
of string feature name to Tensor and labels is a Tensor or a
dictionary of string label name to Tensor. Both features and
labels are consumed by model_fn. They should satisfy the expectation
of model_fn from inputs.

	steps – Number of steps for which to evaluate model. If None, evaluates
until input_fn raises an end-of-input exception.

	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the evaluation call.

	checkpoint_path – Path of a specific checkpoint to evaluate. If None, the
latest checkpoint in model_dir is used. If there are no checkpoints
in model_dir, evaluation is run with newly initialized Variables
instead of ones restored from checkpoint.

	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.

	Returns

	A dict containing the evaluation metrics specified in model_fn keyed by
name, as well as an entry global_step which contains the value of the
global step for which this evaluation was performed. For canned
estimators, the dict contains the loss (mean loss per mini-batch) and
the average_loss (mean loss per sample). Canned classifiers also return
the accuracy. Canned regressors also return the label/mean and the
prediction/mean.

	Raises

	
	ValueError – If steps <= 0.

	ValueError – If no model has been trained, namely model_dir, or the
given checkpoint_path is empty.

	
export_saved_model(export_dir_base, serving_input_receiver_fn, assets_extra=None, as_text=False, checkpoint_path=None)

	Exports inference graph as a SavedModel into the given dir.

For a detailed guide, see
[Using SavedModel with Estimators](https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators).

This method builds a new graph by first calling the
serving_input_receiver_fn to obtain feature Tensor`s, and then calling
this `Estimator’s model_fn to generate the model graph based on those
features. It restores the given checkpoint (or, lacking that, the most
recent checkpoint) into this graph in a fresh session. Finally it creates
a timestamped export directory below the given export_dir_base, and writes
a SavedModel into it containing a single tf.MetaGraphDef saved from this
session.

The exported MetaGraphDef will provide one SignatureDef for each
element of the export_outputs dict returned from the model_fn, named
using
the same keys. One of these keys is always
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
indicating which
signature will be served when a serving request does not specify one.
For each signature, the outputs are provided by the corresponding
tf.estimator.export.ExportOutput`s, and the inputs are always the input
receivers provided by
the `serving_input_receiver_fn.

Extra assets may be written into the SavedModel via the assets_extra
argument. This should be a dict, where each key gives a destination path
(including the filename) relative to the assets.extra directory. The
corresponding value gives the full path of the source file to be copied.
For example, the simple case of copying a single file without renaming it
is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

	Parameters

	
	export_dir_base – A string containing a directory in which to create
timestamped subdirectories containing exported `SavedModel`s.

	serving_input_receiver_fn – A function that takes no argument and returns a
tf.estimator.export.ServingInputReceiver or
tf.estimator.export.TensorServingInputReceiver.

	assets_extra – A dict specifying how to populate the assets.extra directory
within the exported SavedModel, or None if no extra assets are
needed.

	as_text – whether to write the SavedModel proto in text format.

	checkpoint_path – The checkpoint path to export. If None (the default),
the most recent checkpoint found within the model directory is chosen.

	Returns

	The string path to the exported directory.

	Raises

	
	ValueError – if no serving_input_receiver_fn is provided, no

	export_outputs are provided, or no checkpoint can be found.

	
export_savedmodel(export_dir_base, serving_input_receiver_fn, assets_extra=None, as_text=False, checkpoint_path=None, strip_default_attrs=False)

	Exports inference graph as a SavedModel into the given dir.

Note that export_to_savedmodel will be renamed to export_saved_model
in TensorFlow 2.0. At that time, export_to_savedmodel without the
additional underscore will be available only through tf.compat.v1.

Please see tf.estimator.Estimator.export_saved_model for more information.

	There is one additional arg versus the new method:

	
	strip_default_attrs: This parameter is going away in TF 2.0, and

	the new behavior will automatically strip all default attributes.
Boolean. If True, default-valued attributes will be
removed from the `NodeDef`s. For a detailed guide, see [Stripping
Default-Valued Attributes](
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes).

	
get_variable_names()

	Returns list of all variable names in this model.

	Returns

	List of names.

	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.

	
get_variable_value(name)

	Returns value of the variable given by name.

	Parameters

	name – string or a list of string, name of the tensor.

	Returns

	Numpy array - value of the tensor.

	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.

	
latest_checkpoint()

	Finds the filename of the latest saved checkpoint file in model_dir.

	Returns

	The full path to the latest checkpoint or None if no checkpoint was
found.

	
model_fn

	Returns the model_fn which is bound to self.params.

	Returns

	def model_fn(features, labels, mode, config)

	Return type

	The model_fn with following signature

	
predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None, yield_single_examples=True)

	Yields predictions for given features.

Please note that interleaving two predict outputs does not work. See:
[issue/20506](
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517)

	Parameters

	
	input_fn – A function that constructs the features. Prediction continues
until input_fn raises an end-of-input exception
(tf.errors.OutOfRangeError or StopIteration).
See [Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:

	A tf.data.Dataset object: Outputs of Dataset object must have
same constraints as below.

	features: A tf.Tensor or a dictionary of string feature name to
Tensor. features are consumed by model_fn. They should satisfy
the expectation of model_fn from inputs.

	A tuple, in which case the first item is extracted as features.

	predict_keys – list of str, name of the keys to predict. It is used if
the tf.estimator.EstimatorSpec.predictions is a dict. If
predict_keys is used then rest of the predictions will be filtered
from the dictionary. If None, returns all.

	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the prediction call.

	checkpoint_path – Path of a specific checkpoint to predict. If None, the
latest checkpoint in model_dir is used. If there are no checkpoints
in model_dir, prediction is run with newly initialized Variables
instead of ones restored from checkpoint.

	yield_single_examples – If False, yields the whole batch as returned by
the model_fn instead of decomposing the batch into individual
elements. This is useful if model_fn returns some tensors whose first
dimension is not equal to the batch size.

	Yields

	Evaluated values of predictions tensors.

	Raises

	
	ValueError – Could not find a trained model in model_dir.

	ValueError – If batch length of predictions is not the same and
yield_single_examples is True.

	ValueError – If there is a conflict between predict_keys and
predictions. For example if predict_keys is not None but
tf.estimator.EstimatorSpec.predictions is not a dict.

	
train(input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)

	Trains a model given training data input_fn.

	Parameters

	
	input_fn – A function that provides input data for training as minibatches.
See [Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following: * A
tf.data.Dataset object: Outputs of Dataset object must be a tuple
(features, labels) with same constraints as below. * A tuple
(features, labels): Where features is a tf.Tensor or a dictionary
of string feature name to Tensor and labels is a Tensor or a
dictionary of string label name to Tensor. Both features and
labels are consumed by model_fn. They should satisfy the expectation
of model_fn from inputs.

	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the training loop.

	steps – Number of steps for which to train the model. If None, train
forever or train until input_fn generates the tf.errors.OutOfRange
error or StopIteration exception. steps works incrementally. If you
call two times train(steps=10) then training occurs in total 20 steps.
If OutOfRange or StopIteration occurs in the middle, training stops
before 20 steps. If you don’t want to have incremental behavior please
set max_steps instead. If set, max_steps must be None.

	max_steps – Number of total steps for which to train model. If None,
train forever or train until input_fn generates the
tf.errors.OutOfRange error or StopIteration exception. If set,
steps must be None. If OutOfRange or StopIteration occurs in the
middle, training stops before max_steps steps. Two calls to
train(steps=100) means 200 training iterations. On the other hand, two
calls to train(max_steps=100) means that the second call will not do
any iteration since first call did all 100 steps.

	saving_listeners – list of CheckpointSaverListener objects. Used for
callbacks that run immediately before or after checkpoint savings.

	Returns

	self, for chaining.

	Raises

	
	ValueError – If both steps and max_steps are not None.

	ValueError – If either steps or max_steps <= 0.

TPUEstimator

	
class adanet.TPUEstimator(head, subnetwork_generator, max_iteration_steps, mixture_weight_type='scalar', mixture_weight_initializer=None, warm_start_mixture_weights=False, adanet_lambda=0.0, adanet_beta=0.0, evaluator=None, report_materializer=None, use_bias=False, metric_fn=None, force_grow=False, replicate_ensemble_in_training=False, adanet_loss_decay=0.9, worker_wait_timeout_secs=7200, model_dir=None, report_dir=None, config=None, use_tpu=True, train_batch_size=None, eval_batch_size=None)

	Bases: adanet.core.estimator.Estimator, tensorflow.contrib.tpu.python.tpu.tpu_estimator.TPUEstimator

An adanet.Estimator capable of running on TPU.

If running on TPU, all summary calls are rewired to be no-ops during training.

WARNING: this API is highly experimental, unstable, and can change without
warning.

	
eval_dir(name=None)

	Shows the directory name where evaluation metrics are dumped.

	Parameters

	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.

	Returns

	A string which is the path of directory contains evaluation metrics.

	
evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)

	Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data.
Evaluates until:
- steps batches are processed, or
- input_fn raises an end-of-input exception (tf.errors.OutOfRangeError
or
StopIteration).

	Parameters

	
	input_fn – A function that constructs the input data for evaluation. See
[Premade Estimators](
https://tensorflow.org/guide/premade#create_input_functions)
for more information. The
function should construct and return one of the following: * A
tf.data.Dataset object: Outputs of Dataset object must be a tuple
(features, labels) with same constraints as below. * A tuple
(features, labels): Where features is a tf.Tensor or a dictionary
of string feature name to Tensor and labels is a Tensor or a
dictionary of string label name to Tensor. Both features and
labels are consumed by model_fn. They should satisfy the expectation
of model_fn from inputs.

	steps – Number of steps for which to evaluate model. If None, evaluates
until input_fn raises an end-of-input exception.

	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the evaluation call.

	checkpoint_path – Path of a specific checkpoint to evaluate. If None, the
latest checkpoint in model_dir is used. If there are no checkpoints
in model_dir, evaluation is run with newly initialized Variables
instead of ones restored from checkpoint.

	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.

	Returns

	A dict containing the evaluation metrics specified in model_fn keyed by
name, as well as an entry global_step which contains the value of the
global step for which this evaluation was performed. For canned
estimators, the dict contains the loss (mean loss per mini-batch) and
the average_loss (mean loss per sample). Canned classifiers also return
the accuracy. Canned regressors also return the label/mean and the
prediction/mean.

	Raises

	
	ValueError – If steps <= 0.

	ValueError – If no model has been trained, namely model_dir, or the
given checkpoint_path is empty.

	
export_saved_model(export_dir_base, serving_input_receiver_fn, assets_extra=None, as_text=False, checkpoint_path=None)

	Exports inference graph as a SavedModel into the given dir.

For a detailed guide, see
[Using SavedModel with Estimators](https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators).

This method builds a new graph by first calling the
serving_input_receiver_fn to obtain feature Tensor`s, and then calling
this `Estimator’s model_fn to generate the model graph based on those
features. It restores the given checkpoint (or, lacking that, the most
recent checkpoint) into this graph in a fresh session. Finally it creates
a timestamped export directory below the given export_dir_base, and writes
a SavedModel into it containing a single tf.MetaGraphDef saved from this
session.

The exported MetaGraphDef will provide one SignatureDef for each
element of the export_outputs dict returned from the model_fn, named
using
the same keys. One of these keys is always
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
indicating which
signature will be served when a serving request does not specify one.
For each signature, the outputs are provided by the corresponding
tf.estimator.export.ExportOutput`s, and the inputs are always the input
receivers provided by
the `serving_input_receiver_fn.

Extra assets may be written into the SavedModel via the assets_extra
argument. This should be a dict, where each key gives a destination path
(including the filename) relative to the assets.extra directory. The
corresponding value gives the full path of the source file to be copied.
For example, the simple case of copying a single file without renaming it
is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

	Parameters

	
	export_dir_base – A string containing a directory in which to create
timestamped subdirectories containing exported `SavedModel`s.

	serving_input_receiver_fn – A function that takes no argument and returns a
tf.estimator.export.ServingInputReceiver or
tf.estimator.export.TensorServingInputReceiver.

	assets_extra – A dict specifying how to populate the assets.extra directory
within the exported SavedModel, or None if no extra assets are
needed.

	as_text – whether to write the SavedModel proto in text format.

	checkpoint_path – The checkpoint path to export. If None (the default),
the most recent checkpoint found within the model directory is chosen.

	Returns

	The string path to the exported directory.

	Raises

	
	ValueError – if no serving_input_receiver_fn is provided, no

	export_outputs are provided, or no checkpoint can be found.

	
export_savedmodel(export_dir_base, serving_input_receiver_fn, assets_extra=None, as_text=False, checkpoint_path=None, strip_default_attrs=False)

	Exports inference graph as a SavedModel into the given dir.

Note that export_to_savedmodel will be renamed to export_saved_model
in TensorFlow 2.0. At that time, export_to_savedmodel without the
additional underscore will be available only through tf.compat.v1.

Please see tf.estimator.Estimator.export_saved_model for more information.

	There is one additional arg versus the new method:

	
	strip_default_attrs: This parameter is going away in TF 2.0, and

	the new behavior will automatically strip all default attributes.
Boolean. If True, default-valued attributes will be
removed from the `NodeDef`s. For a detailed guide, see [Stripping
Default-Valued Attributes](
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes).

	
get_variable_names()

	Returns list of all variable names in this model.

	Returns

	List of names.

	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.

	
get_variable_value(name)

	Returns value of the variable given by name.

	Parameters

	name – string or a list of string, name of the tensor.

	Returns

	Numpy array - value of the tensor.

	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.

	
latest_checkpoint()

	Finds the filename of the latest saved checkpoint file in model_dir.

	Returns

	The full path to the latest checkpoint or None if no checkpoint was
found.

	
model_fn

	Returns the model_fn which is bound to self.params.

	Returns

	def model_fn(features, labels, mode, config)

	Return type

	The model_fn with following signature

	
predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None, yield_single_examples=True)

	Yields predictions for given features.

Please note that interleaving two predict outputs does not work. See:
[issue/20506](
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517)

	Parameters

	
	input_fn – A function that constructs the features. Prediction continues
until input_fn raises an end-of-input exception
(tf.errors.OutOfRangeError or StopIteration).
See [Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:

	A tf.data.Dataset object: Outputs of Dataset object must have
same constraints as below.

	features: A tf.Tensor or a dictionary of string feature name to
Tensor. features are consumed by model_fn. They should satisfy
the expectation of model_fn from inputs.

	A tuple, in which case the first item is extracted as features.

	predict_keys – list of str, name of the keys to predict. It is used if
the tf.estimator.EstimatorSpec.predictions is a dict. If
predict_keys is used then rest of the predictions will be filtered
from the dictionary. If None, returns all.

	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the prediction call.

	checkpoint_path – Path of a specific checkpoint to predict. If None, the
latest checkpoint in model_dir is used. If there are no checkpoints
in model_dir, prediction is run with newly initialized Variables
instead of ones restored from checkpoint.

	yield_single_examples – If False, yields the whole batch as returned by
the model_fn instead of decomposing the batch into individual
elements. This is useful if model_fn returns some tensors whose first
dimension is not equal to the batch size.

	Yields

	Evaluated values of predictions tensors.

	Raises

	
	ValueError – Could not find a trained model in model_dir.

	ValueError – If batch length of predictions is not the same and
yield_single_examples is True.

	ValueError – If there is a conflict between predict_keys and
predictions. For example if predict_keys is not None but
tf.estimator.EstimatorSpec.predictions is not a dict.

	
train(input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)

	Trains a model given training data input_fn.

	Parameters

	
	input_fn – A function that provides input data for training as minibatches.
See [Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following: * A
tf.data.Dataset object: Outputs of Dataset object must be a tuple
(features, labels) with same constraints as below. * A tuple
(features, labels): Where features is a tf.Tensor or a dictionary
of string feature name to Tensor and labels is a Tensor or a
dictionary of string label name to Tensor. Both features and
labels are consumed by model_fn. They should satisfy the expectation
of model_fn from inputs.

	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the training loop.

	steps – Number of steps for which to train the model. If None, train
forever or train until input_fn generates the tf.errors.OutOfRange
error or StopIteration exception. steps works incrementally. If you
call two times train(steps=10) then training occurs in total 20 steps.
If OutOfRange or StopIteration occurs in the middle, training stops
before 20 steps. If you don’t want to have incremental behavior please
set max_steps instead. If set, max_steps must be None.

	max_steps – Number of total steps for which to train model. If None,
train forever or train until input_fn generates the
tf.errors.OutOfRange error or StopIteration exception. If set,
steps must be None. If OutOfRange or StopIteration occurs in the
middle, training stops before max_steps steps. Two calls to
train(steps=100) means 200 training iterations. On the other hand, two
calls to train(max_steps=100) means that the second call will not do
any iteration since first call did all 100 steps.

	saving_listeners – list of CheckpointSaverListener objects. Used for
callbacks that run immediately before or after checkpoint savings.

	Returns

	self, for chaining.

	Raises

	
	ValueError – If both steps and max_steps are not None.

	ValueError – If either steps or max_steps <= 0.

Ensembles

Collections representing learned combinations of subnetworks.

MixtureWeightType

	
class adanet.MixtureWeightType

	Mixture weight types available for learning subnetwork contributions.

The following mixture weight types are defined:

	SCALAR: Produces a rank 0 Tensor mixture weight.

	VECTOR: Produces a rank 1 Tensor mixture weight.

	MATRIX: Produces a rank 2 Tensor mixture weight.

WeightedSubnetwork

	
class adanet.WeightedSubnetwork

	An AdaNet weighted subnetwork.

A weighted subnetwork is a weight ‘w’ applied to a subnetwork’s last layer
‘u’. The results is the weighted subnetwork’s logits, regularized by its
complexity.

	Parameters

	
	name – String name of subnetwork as defined by its
adanet.subnetwork.Builder.

	iteration_number – Integer iteration when the subnetwork was created.

	weight – The weight tf.Tensor or dict of string to weight
tf.Tensor (for multi-head) to apply to this subnetwork. The
AdaNet paper refers to this weight as ‘w’ in Equations (4), (5), and (6).

	logits – The output tf.Tensor or dict of string to weight
tf.Tensor (for multi-head) after the matrix multiplication of
weight and the subnetwork’s last_layer(). The output’s shape is
[batch_size, logits_dimension]. It is equivalent to a linear logits layer
in a neural network.

	subnetwork – The adanet.subnetwork.Subnetwork to weight.

	Returns

	An adanet.WeightedSubnetwork object.

Ensemble

	
class adanet.Ensemble

	An AdaNet ensemble.

An ensemble is a collection of subnetworks which forms a neural network
through the weighted sum of their outputs. It is represented by ‘f’ throughout
the AdaNet paper. Its component subnetworks’ weights are complexity
regularized (Gamma) as defined in Equation (4).

	Parameters

	
	weighted_subnetworks – List of adanet.WeightedSubnetwork instances
that form this ensemble. Ordered from first to most recent.

	bias – Bias term tf.Tensor or dict of string to bias term
tf.Tensor (for multi-head) for the ensemble’s logits.

	logits – Logits tf.Tensor or dict of string to logits
tf.Tensor (for multi-head). The result of the function ‘f’ as
defined in Section 5.1 which is the sum of the logits of all
adanet.WeightedSubnetwork instances in ensemble.

	Returns

	An adanet.Ensemble instance.

Evaluator

Measures adanet.Ensemble performance on a given dataset.

Evaluator

	
class adanet.Evaluator(input_fn, steps=None)

	Evaluates candidate ensemble performance.

	Parameters

	
	input_fn – Input function returning a tuple of: features - Dictionary of
string feature name to Tensor. labels - Tensor of labels.

	steps – Number of steps for which to evaluate the ensembles. If an
OutOfRangeError occurs, evaluation stops. If set to None, will iterate
the dataset until all inputs are exhausted.

	Returns

	An adanet.Evaluator instance.

	
evaluate_adanet_losses(sess, adanet_losses)

	Evaluates the given AdaNet objectives on the data from input_fn.

The candidates are fed the same batches of features and labels as
provided by input_fn, and their losses are computed and summed over
steps batches.

	Parameters

	
	sess – Session instance with most recent variable values loaded.

	adanet_losses – List of AdaNet loss Tensors.

	Returns

	List of evaluated AdaNet losses.

	
input_fn

	Return the input_fn.

	
steps

	Return the number of evaluation steps.

Summary

Extends tf.summary to power AdaNet’s TensorBoard integration.

Summary

	
class adanet.Summary

	Interface for writing summaries to Tensorboard.

	
audio(name, tensor, sample_rate, max_outputs=3, family=None)

	Outputs a tf.Summary protocol buffer with audio.

The summary has up to max_outputs summary values containing audio. The
audio is built from tensor which must be 3-D with shape [batch_size,
frames, channels] or 2-D with shape [batch_size, frames]. The values are
assumed to be in the range of [-1.0, 1.0] with a sample rate of
sample_rate.

The tag in the outputted tf.Summary.Value protobufs is generated based on
the
name, with a suffix depending on the max_outputs setting:

	If max_outputs is 1, the summary value tag is ‘name/audio’.

	If max_outputs is greater than 1, the summary value tags are

generated sequentially as ‘name/audio/0’, ‘name/audio/1’, etc

	Parameters

	
	name – A name for the generated node. Will also serve as a series name in
TensorBoard.

	tensor – A 3-D float32 Tensor of shape [batch_size, frames, channels]
or a 2-D float32 Tensor of shape [batch_size, frames].

	sample_rate – A Scalar float32 Tensor indicating the sample rate of the
signal in hertz.

	max_outputs – Max number of batch elements to generate audio for.

	family – Optional; if provided, used as the prefix of the summary tag name,
which controls the tab name used for display on Tensorboard.

	Returns

	A scalar Tensor of type string. The serialized tf.Summary protocol
buffer.

	
histogram(name, values, family=None)

	Outputs a tf.Summary protocol buffer with a histogram.

Adding a histogram summary makes it possible to visualize your data’s
distribution in TensorBoard. You can see a detailed explanation of the
TensorBoard histogram dashboard
[here](https://www.tensorflow.org/get_started/tensorboard_histograms).

The generated [tf.Summary](
tensorflow/core/framework/summary.proto)
has one summary value containing a histogram for values.

This op reports an InvalidArgument error if any value is not finite.

	Parameters

	
	name – A name for the generated node. Will also serve as a series name in
TensorBoard.

	values – A real numeric Tensor. Any shape. Values to use to build the
histogram.

	family – Optional; if provided, used as the prefix of the summary tag name,
which controls the tab name used for display on Tensorboard.

	Returns

	A scalar Tensor of type string. The serialized tf.Summary protocol
buffer.

	
image(name, tensor, max_outputs=3, family=None)

	Outputs a tf.Summary protocol buffer with images.

The summary has up to max_outputs summary values containing images. The
images are built from tensor which must be 4-D with shape [batch_size,
height, width, channels] and where channels can be:

	1: tensor is interpreted as Grayscale.

	3: tensor is interpreted as RGB.

	4: tensor is interpreted as RGBA.

The images have the same number of channels as the input tensor. For float
input, the values are normalized one image at a time to fit in the range
[0, 255]. uint8 values are unchanged. The op uses two different
normalization algorithms:

	If the input values are all positive, they are rescaled so the largest

one is 255.
* If any input value is negative, the values are shifted so input value 0.0

is at 127. They are then rescaled so that either the smallest value is 0,
or the largest one is 255.

The tag in the outputted tf.Summary.Value protobufs is generated based on
the
name, with a suffix depending on the max_outputs setting:

	If max_outputs is 1, the summary value tag is ‘name/image’.

	If max_outputs is greater than 1, the summary value tags are

generated sequentially as ‘name/image/0’, ‘name/image/1’, etc.

	Parameters

	
	name – A name for the generated node. Will also serve as a series name in
TensorBoard.

	tensor – A 4-D uint8 or float32 Tensor of shape [batch_size, height,
width, channels] where channels is 1, 3, or 4.

	max_outputs – Max number of batch elements to generate images for.

	family – Optional; if provided, used as the prefix of the summary tag name,
which controls the tab name used for display on Tensorboard.

	Returns

	A scalar Tensor of type string. The serialized tf.Summary protocol
buffer.

	
scalar(name, tensor, family=None)

	Outputs a tf.Summary protocol buffer containing a single scalar value.

The generated tf.Summary has a Tensor.proto containing the input Tensor.

	Parameters

	
	name – A name for the generated node. Will also serve as the series name in
TensorBoard.

	tensor – A real numeric Tensor containing a single value.

	family – Optional; if provided, used as the prefix of the summary tag name,
which controls the tab name used for display on Tensorboard.

	Returns

	A scalar Tensor of type string. Which contains a tf.Summary
protobuf.

	Raises

	ValueError – If tensor has the wrong shape or type.

ReportMaterializer

ReportMaterializer

	
class adanet.ReportMaterializer(input_fn, steps=None)

	Materializes reports.

Specifically it materializes a subnetwork’s adanet.subnetwork.Report
instances into adanet.subnetwork.MaterializedReport instances.

Requires an input function input_fn that returns a tuple of:

	features: Dictionary of string feature name to Tensor.

	labels: Tensor of labels.

	Parameters

	
	input_fn – The input function.

	steps – Number of steps for which to materialize the ensembles. If an
OutOfRangeError occurs, materialization stops. If set to None, will
iterate the dataset until all inputs are exhausted.

	Returns

	A ReportMaterializer instance.

	
input_fn

	Returns the input_fn that materialize_subnetwork_reports would run on.

Even though this property appears to be unused, it would be used to build
the AdaNet model graph inside AdaNet estimator.train(). After the graph is
built, the queue_runners are started and the initializers are run,
AdaNet estimator.train() passes its tf.Session as an argument to
materialize_subnetwork_reports(), thus indirectly making input_fn
available to materialize_subnetwork_reports.

	
materialize_subnetwork_reports(sess, iteration_number, subnetwork_reports, included_subnetwork_names)

	Materializes the Tensor objects in subnetwork_reports using sess.

This converts the Tensors in subnetwork_reports to ndarrays, logs the
progress, converts the ndarrays to python primitives, then packages them
into adanet.subnetwork.MaterializedReports.

	Parameters

	
	sess – Session instance with most recent variable values loaded.

	iteration_number – Integer iteration number.

	subnetwork_reports – Dict mapping string names to subnetwork.Report
objects to be materialized.

	included_subnetwork_names – List of string names of the
`subnetwork.Report`s that are included in the final ensemble.

	Returns

	List of adanet.subnetwork.MaterializedReport objects.

	
steps

	Return the number of steps.

 adanet.subnetwork

adanet.subnetwork

Low-level APIs for defining custom subnetworks and search spaces.

Generators

Interfaces and containers for defining subnetworks, search spaces, and search algorithms.

Subnetwork

	
class adanet.subnetwork.Subnetwork

	An AdaNet subnetwork.

In the AdaNet paper, an adanet.subnetwork.Subnetwork is are called a
‘subnetwork’, and indicated by ‘h’. A collection of weighted subnetworks form
an AdaNet ensemble.

	Parameters

	
	last_layer – tf.Tensor output or dict of string to
tf.Tensor outputs (for multi-head) of the last layer of the
subnetwork, i.e the layer before the logits layer. When the mixture weight
type is MATRIX, the AdaNet algorithm takes care of computing
ensemble mixture weights matrices (one per subnetwork) that multiply the
various last layers of the ensemble’s subnetworks, and regularize them
using their subnetwork’s complexity. This field is represented by ‘h’ in
the AdaNet paper.

	logits – tf.Tensor logits or dict of string to tf.Tensor
logits (for multi-head) for training the subnetwork. These logits are not
used in the ensemble’s outputs if the mixture weight type is
MATRIX, instead AdaNet learns its own logits (mixture weights)
from the subnetwork’s last_layers with complexity regularization. The
logits are used in the ensemble only when the mixture weights type is
SCALAR or VECTOR. Even though the logits are not used
in the ensemble in some cases, they should always be supplied as adanet
uses the logits to train the subnetworks.

	complexity – A scalar tf.Tensor representing the complexity of the
subnetwork’s architecture. It is used for choosing the best subnetwork at
each iteration, and for regularizing the weighted outputs of more complex
subnetworks.

	persisted_tensors – DEPRECATED. See shared. Optional nested dictionary of
string to tf.Tensor to persist across iterations. At the end of
an iteration, the tf.Tensor instances will be available to
subnetworks in the next iterations, whereas others that are not part of
the Subnetwork will be pruned. This allows later
adanet.subnetwork.Subnetwork instances to dynamically build
upon arbitrary tf.Tensors from previous
adanet.subnetwork.Subnetwork instances.

	shared – Optional Python object(s), primitive(s), or function(s) to share
with subnetworks within the same iteration or in future iterations.

	Returns

	A validated adanet.subnetwork.Subnetwork object.

	Raises

	
	ValueError – If last_layer is None.

	ValueError – If logits is None.

	ValueError – If logits is a dict but last_layer is not.

	ValueError – If last_layer is a dict but logits is not.

	ValueError – If complexity is None.

	ValueError – If persisted_tensors is present but not a dictionary.

	ValueError – If persisted_tensors contains an empty nested dictionary.

TrainOpSpec

	
class adanet.subnetwork.TrainOpSpec

	A data structure for specifying training operations.

	Parameters

	
	train_op – Op for the training step.

	chief_hooks – Iterable of tf.train.SessionRunHook objects to run on
the chief worker during training.

	hooks – Iterable of tf.train.SessionRunHook objects to run on all
workers during training.

	Returns

	A adanet.subnetwork.TrainOpSpec object.

Builder

	
class adanet.subnetwork.Builder

	Bases: object

Interface for a subnetwork builder.

Given features, labels, and the best ensemble of subnetworks at iteration
t-1, a Builder creates a Subnetwork to add to a candidate
ensemble at iteration t. These candidate ensembles are evaluated against one
another at the end of the iteration, and the best one is selected based on its
complexity-regularized loss.

	
build_mixture_weights_train_op(loss, var_list, logits, labels, iteration_step, summary)

	Returns an op for training the ensemble’s mixture weights.

Allows AdaNet to learn the mixture weights of each subnetwork
according to Equation (6).

This method will be called once after build_subnetwork.

Accessing the global step via tf.train.get_or_create_global_step()
or tf.train.get_global_step() within this scope will return an
incrementable iteration step since the beginning of the iteration.

	Parameters

	
	loss – A tf.Tensor containing the ensemble’s loss to minimize.

	var_list – List of ensemble mixture weight tf.Variables to update as
become part of the training operation.

	logits – The ensemble’s logits tf.Tensor from applying the mixture
weights and bias to the ensemble’s subnetworks.

	labels – Labels tf.Tensor or a dictionary of string label name to
tf.Tensor (for multi-head).

	iteration_step – Integer tf.Tensor representing the step since the
beginning of the current iteration, as opposed to the global step.

	summary – An adanet.Summary for scoping summaries to individual
subnetworks in Tensorboard. Using tf.summary within this scope
will use this adanet.Summary under the hood.

	Returns

	Either a train op or an adanet.subnetwork.TrainOpSpec.

	
build_subnetwork(features, labels, logits_dimension, training, iteration_step, summary, previous_ensemble=None)

	Returns the candidate Subnetwork to add to the ensemble.

This method will be called only once, before
build_subnetwork_train_op()
and build_mixture_weights_train_op() are called. This method should
construct the candidate subnetwork’s graph operations and variables.

Accessing the global step via tf.train.get_or_create_global_step()
or
tf.train.get_global_step() within this scope will return an
incrementable
iteration step since the beginning of the iteration.

	Parameters

	
	features – Input dict of tf.Tensor objects.

	labels – Labels tf.Tensor or a dictionary of string label name to
tf.Tensor (for multi-head). Can be None.

	logits_dimension – Size of the last dimension of the logits
tf.Tensor. Typically, logits have for shape [batch_size,
logits_dimension].

	training – A python boolean indicating whether the graph is in training
mode or prediction mode.

	iteration_step – Integer tf.Tensor representing the step since the
beginning of the current iteration, as opposed to the global step.

	summary – An adanet.Summary for scoping summaries to individual
subnetworks in Tensorboard. Using tf.summary() within this scope
will use this adanet.Summary under the hood.

	previous_ensemble – The best adanet.Ensemble from iteration t-1.
The created subnetwork will extend the previous ensemble to form the
adanet.Ensemble at iteration t.

	Returns

	An adanet.subnetwork.Subnetwork instance.

	
build_subnetwork_report()

	Returns a subnetwork.Report to materialize and record.

This method will be called once after build_subnetwork().
Do NOT depend on variables created in build_subnetwork_train_op() or
build_mixture_weights_train_op(), because they are not called before
build_subnetwork_report() is called.

If it returns None, AdaNet records the name and standard eval metrics.

	
build_subnetwork_train_op(subnetwork, loss, var_list, labels, iteration_step, summary, previous_ensemble)

	Returns an op for training a new subnetwork.

This method will be called once after build_subnetwork().

Accessing the global step via tf.train.get_or_create_global_step()
or
tf.train.get_global_step() within this scope will return an
incrementable
iteration step since the beginning of the iteration.

	Parameters

	
	subnetwork – Newest subnetwork, that is not part of the
previous_ensemble.

	loss – A tf.Tensor containing the subnetwork’s loss to minimize.

	var_list – List of subnetwork tf.Variable parameters to update as
part of the training operation.

	labels – Labels tf.Tensor or a dictionary of string label name to
tf.Tensor (for multi-head).

	iteration_step – Integer tf.Tensor representing the step since the
beginning of the current iteration, as opposed to the global step.

	summary – An adanet.Summary for scoping summaries to individual
subnetworks in Tensorboard. Using tf.summary within this scope will
use this adanet.Summary under the hood.

	previous_ensemble – The best Ensemble from iteration t-1. The created
subnetwork will extend the previous ensemble to form the Ensemble at
iteration t. Is None for iteration 0.

	Returns

	Either a train op or an adanet.subnetwork.TrainOpSpec.

	
name

	Returns the unique name of this subnetwork within an iteration.

	
prune_previous_ensemble(previous_ensemble)

	Specifies which subnetworks from the previous ensemble to keep.

The selected subnetworks from the previous ensemble will be kept in the
candidate ensemble that includes this subnetwork.

By default, none of the previous ensemble subnetworks are pruned.

	Parameters

	previous_ensemble – adanet.Ensemble object.

	Returns

	List of integer indices of weighted_subnetworks to keep.

Generator

	
class adanet.subnetwork.Generator

	Bases: object

Interface for a candidate subnetwork generator.

Given the ensemble of subnetworks at iteration t-1, this object is
responsible for generating the set of candidate subnetworks for iteration t
that minimize the objective as part of an ensemble.

	
generate_candidates(previous_ensemble, iteration_number, previous_ensemble_reports, all_reports)

	Generates adanet.subnetwork.Builder instances for an iteration.

NOTE: Every call to generate_candidates() must be deterministic for
the given arguments.

	Parameters

	
	previous_ensemble – The best adanet.Ensemble from iteration t-1.
DEPRECATED. We are transitioning away from the use of previous_ensemble
in generate_candidates. New Generators should not use
previous_ensemble in their implementation of generate_candidates –
please only use iteration_number, previous_ensemble_reports and
all_reports.

	iteration_number – Python integer AdaNet iteration t, starting from 0.

	previous_ensemble_reports – List of
adanet.subnetwork.MaterializedReport instances corresponding to
the Builders composing adanet.Ensemble from iteration t-1. The
first element in the list corresponds to the Builder added in the
first iteration. If a adanet.subnetwork.MaterializedReport is
not supplied to the estimator, previous_ensemble_report is None.

	all_reports – List of adanet.subnetwork.MaterializedReport
instances. If an adanet.subnetwork.ReportMaterializer is not
supplied to the estimator, all_reports is None. If
adanet.subnetwork.ReportMaterializer is supplied to the
estimator and t=0, all_reports is an empty List. Otherwise,
all_reports is a sequence of Lists. Each element of the sequence is a
List containing all the adanet.subnetwork.MaterializedReport
instances in an AdaNet iteration, starting from iteration 0, and
ending at iteration t-1.

	Returns

	A list of adanet.subnetwork.Builder instances.

Reports

Containers for metadata about trained subnetworks.

Report

	
class adanet.subnetwork.Report

	A container for data to be collected about a Subnetwork.

	Parameters

	
	hparams – A dict mapping strings to python strings, ints, bools, or floats.
It is meant to contain the constants that define the
adanet.subnetwork.Builder, such as dropout, number of layers, or
initial learning rate.

	attributes – A dict mapping strings to rank 0 Tensors of dtype string, int32,
or float32. It is meant to contain properties that may or may not change
over the course of training the adanet.subnetwork.Subnetwork,
such as the number of parameters, the Lipschitz constant, the L_2 norm
of the weights, or learning rate at materialization time.

	metrics – Dict of metric results keyed by name. The values of the dict are
the results of calling a metric function, namely a (metric_tensor,
update_op) tuple. metric_tensor should be evaluated without any impact
on state (typically is a pure computation results based on variables.).
For example, it should not trigger the update_op or requires any input
fetching. This is meant to contain metrics of interest, such as the
training loss, complexity regularized loss, or standard deviation of the
last layer outputs.

	Returns

	A validated adanet.subnetwork.Report object.

	Raises

	ValueError – If validation fails.

MaterializedReport

	
class adanet.subnetwork.MaterializedReport

	Data collected about a adanet.subnetwork.Subnetwork.

	Parameters

	
	iteration_number – A python integer for the AdaNet iteration number, starting
from 0.

	name – A string, which is either the name of the corresponding Builder, or
“previous_ensemble” if it refers to the previous_ensemble.

	hparams – A dict mapping strings to python strings, ints, or floats. These
are constants passed from the author of the
adanet.subnetwork.Builder that was used to construct this
adanet.subnetwork.Subnetwork. It is meant to contain the
arguments that defined the adanet.subnetwork.Builder, such as
dropout, number of layers, or initial learning rate.

	attributes – A dict mapping strings to python strings, ints, bools, or
floats. These are python primitives that come from materialized Tensors;
these Tensors were defined by the author of the
adanet.subnetwork.Builder that was used
to construct this adanet.subnetwork.Subnetwork. It is meant to
contain properties that may or may not change over the course of
training the adanet.subnetwork.Subnetwork, such as the number of
parameters, the Lipschitz constant, or the L_2 norm of the weights.

	metrics – A dict mapping strings to python strings, ints, or floats. These
are python primitives that come from metrics that were evaluated on the
trained adanet.subnetwork.Subnetwork over some dataset; these
metrics were defined by the author of the
adanet.subnetwork.Builder that was used to construct this
adanet.subnetwork.Subnetwork. It is meant to contain
performance metrics or measures that could predict generalization, such
as the training loss, complexity regularized loss, or standard deviation
of the last layer outputs.

	included_in_final_ensemble – A boolean denoting whether the associated
adanet.subnetwork.Subnetwork was included in the ensemble at the
end of the AdaNet iteration.

	Returns

	An adanet.subnetwork.MaterializedReport object.

 Python Module Index

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 adanet	

 	
 	
 adanet.subnetwork	

 Index

Index

 A
 | B
 | E
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | W

A

 	
 	adanet (module)

 	adanet.subnetwork (module)

 	
 	audio() (adanet.Summary method)

 	AutoEnsembleEstimator (class in adanet)

B

 	
 	build_mixture_weights_train_op() (adanet.subnetwork.Builder method)

 	build_subnetwork() (adanet.subnetwork.Builder method)

 	
 	build_subnetwork_report() (adanet.subnetwork.Builder method)

 	build_subnetwork_train_op() (adanet.subnetwork.Builder method)

 	Builder (class in adanet.subnetwork)

E

 	
 	Ensemble (class in adanet)

 	Estimator (class in adanet)

 	eval_dir() (adanet.AutoEnsembleEstimator method)

 	(adanet.Estimator method)

 	(adanet.TPUEstimator method)

 	evaluate() (adanet.AutoEnsembleEstimator method)

 	(adanet.Estimator method)

 	(adanet.TPUEstimator method)

 	
 	evaluate_adanet_losses() (adanet.Evaluator method)

 	Evaluator (class in adanet)

 	export_saved_model() (adanet.AutoEnsembleEstimator method)

 	(adanet.Estimator method)

 	(adanet.TPUEstimator method)

 	export_savedmodel() (adanet.AutoEnsembleEstimator method)

 	(adanet.Estimator method)

 	(adanet.TPUEstimator method)

G

 	
 	generate_candidates() (adanet.subnetwork.Generator method)

 	Generator (class in adanet.subnetwork)

 	get_variable_names() (adanet.AutoEnsembleEstimator method)

 	(adanet.Estimator method)

 	(adanet.TPUEstimator method)

 	
 	get_variable_value() (adanet.AutoEnsembleEstimator method)

 	(adanet.Estimator method)

 	(adanet.TPUEstimator method)

H

 	
 	histogram() (adanet.Summary method)

I

 	
 	image() (adanet.Summary method)

 	
 	input_fn (adanet.Evaluator attribute)

 	(adanet.ReportMaterializer attribute)

L

 	
 	latest_checkpoint() (adanet.AutoEnsembleEstimator method)

 	(adanet.Estimator method)

 	(adanet.TPUEstimator method)

M

 	
 	materialize_subnetwork_reports() (adanet.ReportMaterializer method)

 	MaterializedReport (class in adanet.subnetwork)

 	MixtureWeightType (class in adanet)

 	
 	model_fn (adanet.AutoEnsembleEstimator attribute)

 	(adanet.Estimator attribute)

 	(adanet.TPUEstimator attribute)

N

 	
 	name (adanet.subnetwork.Builder attribute)

P

 	
 	predict() (adanet.AutoEnsembleEstimator method)

 	(adanet.Estimator method)

 	(adanet.TPUEstimator method)

 	
 	prune_previous_ensemble() (adanet.subnetwork.Builder method)

R

 	
 	Report (class in adanet.subnetwork)

 	
 	ReportMaterializer (class in adanet)

S

 	
 	scalar() (adanet.Summary method)

 	steps (adanet.Evaluator attribute)

 	(adanet.ReportMaterializer attribute)

 	
 	Subnetwork (class in adanet.subnetwork)

 	Summary (class in adanet)

T

 	
 	TPUEstimator (class in adanet)

 	train() (adanet.AutoEnsembleEstimator method)

 	(adanet.Estimator method)

 	(adanet.TPUEstimator method)

 	
 	TrainOpSpec (class in adanet.subnetwork)

W

 	
 	WeightedSubnetwork (class in adanet)

nav.xhtml

 Table of Contents

 		
 AdaNet documentation

 		
 adanet

 		
 Estimators

 		
 AutoEnsembleEstimator

 		
 Estimator

 		
 TPUEstimator

 		
 Ensembles

 		
 MixtureWeightType

 		
 WeightedSubnetwork

 		
 Ensemble

 		
 Evaluator

 		
 Evaluator

 		
 Summary

 		
 Summary

 		
 ReportMaterializer

 		
 ReportMaterializer

 		
 adanet.subnetwork

 		
 Generators

 		
 Subnetwork

 		
 TrainOpSpec

 		
 Builder

 		
 Generator

 		
 Reports

 		
 Report

 		
 MaterializedReport

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minu