
adanet Documentation
Release [0.5.0]

AdaNet Authors

Dec 18, 2018

Package Reference

1 adanet 3

2 adanet.subnetwork 25

3 Indices and tables 31

Python Module Index 33

i

ii

adanet Documentation, Release [0.5.0]

AdaNet: Fast and flexible AutoML with learning guarantees.

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal
expert intervention. AdaNet builds on recent AutoML efforts to be fast and flexible while providing learning guaran-
tees. Importantly, AdaNet provides a general framework for not only learning a neural network architecture, but also
for learning to ensemble to obtain even better models.

This project is based on the AdaNet algorithm, presented in “AdaNet: Adaptive Structural Learning of Artificial Neural
Networks” at ICML 2017, for learning the structure of a neural network as an ensemble of subnetworks.

AdaNet has the following goals:

• Ease of use: Provide familiar APIs (e.g. Keras, Estimator) for training, evaluating, and serving models.

• Speed: Scale with available compute and quickly produce high quality models.

• Flexibility: Allow researchers and practitioners to extend AdaNet to novel subnetwork architectures, search
spaces, and tasks.

• Learning guarantees: Optimize an objective that offers theoretical learning guarantees.

The following animation shows AdaNet adaptively growing an ensemble of neural networks. At each iteration, it
measures the ensemble loss for each candidate, and selects the best one to move onto the next iteration. At subsequent
iterations, the blue subnetworks are frozen, and only yellow subnetworks are trained:

AdaNet was first announced on the Google AI research blog: “[Introducing AdaNet: Fast and Flexible AutoML with
Learning Guarantees](https://ai.googleblog.com/2018/10/introducing-adanet-fast-and-flexible.html)”.

This is not an official Google product.

Package Reference 1

http://proceedings.mlr.press/v70/cortes17a.html
http://proceedings.mlr.press/v70/cortes17a.html
https://icml.cc/Conferences/2017
https://ai.googleblog.com/2018/10/introducing-adanet-fast-and-flexible.html

adanet Documentation, Release [0.5.0]

2 Package Reference

CHAPTER 1

adanet

AdaNet: Fast and flexible AutoML with learning guarantees.

1.1 Estimators

High-level APIs for training, evaluating, predicting, and serving AdaNet model.

1.1.1 AutoEnsembleEstimator

class adanet.AutoEnsembleEstimator(head, candidate_pool, max_iteration_steps, log-
its_fn=None, adanet_lambda=0.0, evaluator=None, met-
ric_fn=None, force_grow=False, adanet_loss_decay=0.9,
worker_wait_timeout_secs=7200, model_dir=None,
config=None)

Bases: adanet.core.estimator.Estimator

A tf.estimator.Estimator that learns to ensemble models.

Specifically, it learns to ensemble models from a candidate pool using the Adanet algorithm.

A simple example of learning to ensemble linear and neural network
models.

import adanet
import tensorflow as tf

feature_columns = ...

head = tf.contrib.estimator.multi_class_head(n_classes=3)

Learn to ensemble linear and DNN models.
estimator = adanet.AutoEnsembleEstimator(

(continues on next page)

3

adanet Documentation, Release [0.5.0]

(continued from previous page)

head=head,
candidate_pool=[

tf.estimator.LinearEstimator(
head=head,
feature_columns=feature_columns,
optimizer=tf.train.FtrlOptimizer(...)),

tf.estimator.DNNEstimator(
head=head,
feature_columns=feature_columns,
optimizer=tf.train.ProximalAdagradOptimizer(...),
hidden_units=[1000, 500, 100])],

max_iteration_steps=50)

Input builders
def input_fn_train:
Returns tf.data.Dataset of (x, y) tuple where y represents label's
class index.
pass

def input_fn_eval:
Returns tf.data.Dataset of (x, y) tuple where y represents label's
class index.
pass

def input_fn_predict:
Returns tf.data.Dataset of (x, None) tuple.
pass

estimator.train(input_fn=input_fn_train, steps=100)
metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10)
predictions = estimator.predict(input_fn=input_fn_predict)

Parameters

• head – A tf.contrib.estimator.Head instance for computing loss and evaluation
metrics for every candidate.

• candidate_pool – List of tf.estimator.Estimator objects that are candidates
to ensemble at each iteration. The order does not directly affect which candidates will be
included in the final ensemble.

• max_iteration_steps – Total number of steps for which to train candidates per
iteration. If OutOfRange or StopIteration occurs in the middle, training stops before
max_iteration_steps steps.

• logits_fn – A function for fetching the subnetwork logits from a tf.estimator.
EstimatorSpec, which should obey the following signature:

– Args: Can only have following argument: - estimator_spec: The candidate’s tf.
estimator.EstimatorSpec.

– Returns: Logits tf.Tensor or dict of string to logits tf.Tensor (for multi-head)
for the candidate subnetwork extracted from the given estimator_spec. When None, it
will default to returning estimator_spec.predictions when they are a tf.Tensor or the
tf.Tensor for the key ‘logits’ when they are a dict of string to tf.Tensor.

• adanet_lambda – See adanet.Estimator.

• evaluator – See adanet.Estimator.

• metric_fn – See adanet.Estimator.

4 Chapter 1. adanet

adanet Documentation, Release [0.5.0]

• force_grow – See adanet.Estimator.

• adanet_loss_decay – See adanet.Estimator.

• worker_wait_timeout_secs – See adanet.Estimator.

• model_dir – See adanet.Estimator.

• config – See adanet.Estimator.

Returns An adanet.AutoEnsembleEstimator instance.

Raises ValueError – If any of the candidates in candidate_pool are not tf.estimator.
Estimator instances.

eval_dir(name=None)
Shows the directory name where evaluation metrics are dumped.

Parameters name – Name of the evaluation if user needs to run multiple evaluations on different
data sets, such as on training data vs test data. Metrics for different evaluations are saved in
separate folders, and appear separately in tensorboard.

Returns A string which is the path of directory contains evaluation metrics.

evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)
Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data. Evaluates until: - steps batches are processed,
or - input_fn raises an end-of-input exception (tf.errors.OutOfRangeError or StopIteration).

Parameters

• input_fn – A function that constructs the input data for evaluation. See [Premade Esti-
mators](https://tensorflow.org/guide/premade#create_input_functions) for more informa-
tion. The function should construct and return one of the following: * A tf.data.Dataset
object: Outputs of Dataset object must be a tuple (features, labels) with same constraints
as below. * A tuple (features, labels): Where features is a tf.Tensor or a dictionary of
string feature name to Tensor and labels is a Tensor or a dictionary of string label name
to Tensor. Both features and labels are consumed by model_fn. They should satisfy the
expectation of model_fn from inputs.

• steps – Number of steps for which to evaluate model. If None, evaluates until input_fn
raises an end-of-input exception.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the evaluation call.

• checkpoint_path – Path of a specific checkpoint to evaluate. If None, the latest
checkpoint in model_dir is used. If there are no checkpoints in model_dir, evaluation is
run with newly initialized Variables instead of ones restored from checkpoint.

• name – Name of the evaluation if user needs to run multiple evaluations on different data
sets, such as on training data vs test data. Metrics for different evaluations are saved in
separate folders, and appear separately in tensorboard.

Returns A dict containing the evaluation metrics specified in model_fn keyed by name, as well
as an entry global_step which contains the value of the global step for which this evaluation
was performed. For canned estimators, the dict contains the loss (mean loss per mini-batch)
and the average_loss (mean loss per sample). Canned classifiers also return the accuracy.
Canned regressors also return the label/mean and the prediction/mean.

Raises

1.1. Estimators 5

https://tensorflow.org/guide/premade#create_input_functions

adanet Documentation, Release [0.5.0]

• ValueError – If steps <= 0.

• ValueError – If no model has been trained, namely model_dir, or the given check-
point_path is empty.

export_saved_model(export_dir_base, serving_input_receiver_fn, assets_extra=None,
as_text=False, checkpoint_path=None)

Exports inference graph as a SavedModel into the given dir.

For a detailed guide, see [Using SavedModel with Estimators](https://tensorflow.org/guide/saved_model#
using_savedmodel_with_estimators).

This method builds a new graph by first calling the serving_input_receiver_fn to obtain feature Tensor‘s,
and then calling this ‘Estimator’s model_fn to generate the model graph based on those features. It restores
the given checkpoint (or, lacking that, the most recent checkpoint) into this graph in a fresh session. Finally
it creates a timestamped export directory below the given export_dir_base, and writes a SavedModel into
it containing a single tf.MetaGraphDef saved from this session.

The exported MetaGraphDef will provide one SignatureDef for each element of the ex-
port_outputs dict returned from the model_fn, named using the same keys. One of these keys
is always tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating
which signature will be served when a serving request does not specify one. For each signature, the outputs
are provided by the corresponding tf.estimator.export.ExportOutput‘s, and the inputs are always the input
receivers provided by the ‘serving_input_receiver_fn.

Extra assets may be written into the SavedModel via the assets_extra argument. This should be a dict,
where each key gives a destination path (including the filename) relative to the assets.extra directory. The
corresponding value gives the full path of the source file to be copied. For example, the simple case of
copying a single file without renaming it is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

Parameters

• export_dir_base – A string containing a directory in which to create timestamped
subdirectories containing exported ‘SavedModel‘s.

• serving_input_receiver_fn – A function that takes no ar-
gument and returns a tf.estimator.export.ServingInputReceiver or
tf.estimator.export.TensorServingInputReceiver.

• assets_extra – A dict specifying how to populate the assets.extra directory within the
exported SavedModel, or None if no extra assets are needed.

• as_text – whether to write the SavedModel proto in text format.

• checkpoint_path – The checkpoint path to export. If None (the default), the most
recent checkpoint found within the model directory is chosen.

Returns The string path to the exported directory.

Raises

• ValueError – if no serving_input_receiver_fn is provided, no

• export_outputs are provided, or no checkpoint can be found.

export_savedmodel(export_dir_base, serving_input_receiver_fn, assets_extra=None,
as_text=False, checkpoint_path=None, strip_default_attrs=False)

Exports inference graph as a SavedModel into the given dir.

Note that export_to_savedmodel will be renamed to export_saved_model in TensorFlow 2.0. At that time,
export_to_savedmodel without the additional underscore will be available only through tf.compat.v1.

Please see tf.estimator.Estimator.export_saved_model for more information.

6 Chapter 1. adanet

https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators
https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators

adanet Documentation, Release [0.5.0]

There is one additional arg versus the new method:

strip_default_attrs: This parameter is going away in TF 2.0, and the new behavior will automat-
ically strip all default attributes. Boolean. If True, default-valued attributes will be re-
moved from the ‘NodeDef‘s. For a detailed guide, see [Stripping Default-Valued At-
tributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/
README.md#stripping-default-valued-attributes).

get_variable_names()
Returns list of all variable names in this model.

Returns List of names.

Raises ValueError – If the Estimator has not produced a checkpoint yet.

get_variable_value(name)
Returns value of the variable given by name.

Parameters name – string or a list of string, name of the tensor.

Returns Numpy array - value of the tensor.

Raises ValueError – If the Estimator has not produced a checkpoint yet.

latest_checkpoint()
Finds the filename of the latest saved checkpoint file in model_dir.

Returns The full path to the latest checkpoint or None if no checkpoint was found.

model_fn
Returns the model_fn which is bound to self.params.

Returns def model_fn(features, labels, mode, config)

Return type The model_fn with following signature

predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None,
yield_single_examples=True)

Yields predictions for given features.

Please note that interleaving two predict outputs does not work. See: [issue/20506](https://github.com/
tensorflow/tensorflow/issues/20506#issuecomment-422208517)

Parameters

• input_fn – A function that constructs the features. Prediction continues un-
til input_fn raises an end-of-input exception (tf.errors.OutOfRangeError or StopIter-
ation). See [Premade Estimators](https://tensorflow.org/guide/premade_estimators#
create_input_functions) for more information. The function should construct and return
one of the following:

– A tf.data.Dataset object: Outputs of Dataset object must have same constraints as be-
low.

– features: A tf.Tensor or a dictionary of string feature name to Tensor. features are
consumed by model_fn. They should satisfy the expectation of model_fn from inputs.

– A tuple, in which case the first item is extracted as features.

• predict_keys – list of str, name of the keys to predict. It is used if the
tf.estimator.EstimatorSpec.predictions is a dict. If predict_keys is used then rest of the
predictions will be filtered from the dictionary. If None, returns all.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the prediction call.

1.1. Estimators 7

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517
https://tensorflow.org/guide/premade_estimators#create_input_functions
https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release [0.5.0]

• checkpoint_path – Path of a specific checkpoint to predict. If None, the latest check-
point in model_dir is used. If there are no checkpoints in model_dir, prediction is run with
newly initialized Variables instead of ones restored from checkpoint.

• yield_single_examples – If False, yields the whole batch as returned by the
model_fn instead of decomposing the batch into individual elements. This is useful if
model_fn returns some tensors whose first dimension is not equal to the batch size.

Yields Evaluated values of predictions tensors.

Raises

• ValueError – Could not find a trained model in model_dir.

• ValueError – If batch length of predictions is not the same and yield_single_examples
is True.

• ValueError – If there is a conflict between predict_keys and predictions. For example
if predict_keys is not None but tf.estimator.EstimatorSpec.predictions is not a dict.

train(input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)
Trains a model given training data input_fn.

Parameters

• input_fn – A function that provides input data for training as minibatches. See
[Premade Estimators](https://tensorflow.org/guide/premade_estimators#create_input_
functions) for more information. The function should construct and return one of the
following: * A tf.data.Dataset object: Outputs of Dataset object must be a tuple (features,
labels) with same constraints as below. * A tuple (features, labels): Where features is
a tf.Tensor or a dictionary of string feature name to Tensor and labels is a Tensor or a
dictionary of string label name to Tensor. Both features and labels are consumed by
model_fn. They should satisfy the expectation of model_fn from inputs.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the training loop.

• steps – Number of steps for which to train the model. If None, train forever or train until
input_fn generates the tf.errors.OutOfRange error or StopIteration exception. steps works
incrementally. If you call two times train(steps=10) then training occurs in total 20 steps.
If OutOfRange or StopIteration occurs in the middle, training stops before 20 steps. If you
don’t want to have incremental behavior please set max_steps instead. If set, max_steps
must be None.

• max_steps – Number of total steps for which to train model. If None, train forever or
train until input_fn generates the tf.errors.OutOfRange error or StopIteration exception. If
set, steps must be None. If OutOfRange or StopIteration occurs in the middle, training
stops before max_steps steps. Two calls to train(steps=100) means 200 training iterations.
On the other hand, two calls to train(max_steps=100) means that the second call will not
do any iteration since first call did all 100 steps.

• saving_listeners – list of CheckpointSaverListener objects. Used for callbacks that
run immediately before or after checkpoint savings.

Returns self, for chaining.

Raises

• ValueError – If both steps and max_steps are not None.

• ValueError – If either steps or max_steps <= 0.

8 Chapter 1. adanet

https://tensorflow.org/guide/premade_estimators#create_input_functions
https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release [0.5.0]

1.1.2 Estimator

class adanet.Estimator(head, subnetwork_generator, max_iteration_steps, mix-
ture_weight_type=’scalar’, mixture_weight_initializer=None,
warm_start_mixture_weights=False, adanet_lambda=0.0,
adanet_beta=0.0, evaluator=None, report_materializer=None,
use_bias=False, metric_fn=None, force_grow=False, repli-
cate_ensemble_in_training=False, adanet_loss_decay=0.9,
worker_wait_timeout_secs=7200, model_dir=None, report_dir=None,
config=None, **kwargs)

Bases: tensorflow.python.estimator.estimator.Estimator

The AdaNet algorithm implemented as a tf.estimator.Estimator.

AdaNet is as defined in the paper: https://arxiv.org/abs/1607.01097.

The AdaNet algorithm uses a weak learning algorithm to iteratively generate a set of candidate subnetworks that
attempt to minimize the loss function defined in Equation (4) as part of an ensemble. At the end of each iteration,
the best candidate is chosen based on its ensemble’s complexity-regularized train loss. New subnetworks are
allowed to use any subnetwork weights within the previous iteration’s ensemble in order to improve upon them.
If the complexity-regularized loss of the new ensemble, as defined in Equation (4), is less than that of the
previous iteration’s ensemble, the AdaNet algorithm continues onto the next iteration.

AdaNet attempts to minimize the following loss function to learn the mixture weights ‘w’ of each subnetwork
‘h’ in the ensemble with differentiable convex non-increasing surrogate loss function Phi:

Equation (4):

𝐹 (𝑤) =
1

𝑚

𝑚∑︁
𝑖=1

Φ

⎛⎝ 𝑁∑︁
𝑗=1

𝑤𝑗ℎ𝑗(𝑥𝑖), 𝑦𝑖

⎞⎠ +

𝑁∑︁
𝑗=1

(𝜆𝑟(ℎ𝑗) + 𝛽) |𝑤𝑗 |

with 𝜆 >= 0 and 𝛽 >= 0.

This implementation uses an adanet.subnetwork.Generator as its weak learning algorithm for gener-
ating candidate subnetworks. These are trained in parallel using a single graph per iteration. At the end of each
iteration, the estimator saves the sub-graph of the best subnetwork ensemble and its weights as a separate check-
point. At the beginning of the next iteration, the estimator imports the previous iteration’s frozen graph and adds
ops for the next candidates as part of a new graph and session. This allows the estimator have the performance
of Tensorflow’s static graph constraint (minus the performance hit of reconstructing a graph between iterations),
while having the flexibility of having a dynamic graph.

NOTE: Subclassing tf.estimator.Estimator is only necessary to work with tf.estimator.
train_and_evaluate() which asserts that the estimator argument is a tf.estimator.Estimator
subclass. However, all training is delegated to a separate tf.estimator.Estimator instance. It is respon-
sible for supporting both local and distributed training. As such, the adanet.Estimator is only responsible
for bookkeeping across iterations.

Parameters

• head – A tf.contrib.estimator.Head instance for computing loss and evaluation
metrics for every candidate.

• subnetwork_generator – The adanet.subnetwork.Generator which de-
fines the candidate subnetworks to train and evaluate at every AdaNet iteration.

• max_iteration_steps – Total number of steps for which to train candidates per iter-
ation. If OutOfRange or StopIteration occurs in the middle, training stops before
max_iteration_steps steps.

1.1. Estimators 9

https://arxiv.org/abs/1607.01097

adanet Documentation, Release [0.5.0]

• mixture_weight_type – The adanet.MixtureWeightType defining which
mixture weight type to learn in the linear combination of subnetwork outputs:

– SCALAR: creates a rank 0 tensor mixture weight . It performs an element- wise multi-
plication with its subnetwork’s logits. This mixture weight is the simplest to learn, the
quickest to train, and most likely to generalize well.

– VECTOR: creates a tensor with shape [k] where k is the ensemble’s logits dimension as de-
fined by head. It is similar to SCALAR in that it performs an element-wise multiplication
with its subnetwork’s logits, but is more flexible in learning a subnetworks’s preferences
per class.

– MATRIX: creates a tensor of shape [a, b] where a is the number of outputs from the sub-
network’s last_layer and b is the number of outputs from the ensemble’s logits. This
weight matrix-multiplies the subnetwork’s last_layer. This mixture weight offers the
most flexibility and expressivity, allowing subnetworks to have outputs of different di-
mensionalities. However, it also has the most trainable parameters (a*b), and is therefore
the most sensitive to learning rates and regularization.

• mixture_weight_initializer – The initializer for mixture_weights. When None,
the default is different according to mixture_weight_type:

– SCALAR: initializes to 1/N where N is the number of subnetworks in the ensemble giving
a uniform average.

– VECTOR: initializes each entry to 1/N where N is the number of subnetworks in the
ensemble giving a uniform average.

– MATRIX: uses tf.zeros_initializer().

• warm_start_mixture_weights – Whether, at the beginning of an iteration, to ini-
tialize the mixture weights of the subnetworks from the previous ensemble to their learned
value at the previous iteration, as opposed to retraining them from scratch. Takes precedence
over the value for mixture_weight_initializer for subnetworks from previous iterations.

• adanet_lambda – Float multiplier ‘lambda’ for applying L1 regularization to subnet-
works’ mixture weights ‘w’ in the ensemble proportional to their complexity. See Equation
(4) in the AdaNet paper.

• adanet_beta – Float L1 regularization multiplier ‘beta’ to apply equally to all subnet-
works’ weights ‘w’ in the ensemble regardless of their complexity. See Equation (4) in the
AdaNet paper.

• evaluator – An adanet.Evaluator for candidate selection after all subnetworks are
done training. When None, candidate selection uses a moving average of their adanet.
Ensemble AdaNet loss during training instead. In order to use the AdaNet algorithm as
described in [Cortes et al., ‘17], the given adanet.Evaluator must be created with
the same dataset partition used during training. Otherwise, this framework will perform
AdaNet.HoldOut which uses a holdout set for candidate selection, but does not benefit from
learning guarantees.

• report_materializer – An adanet.ReportMaterializer. Its reports are
made available to the subnetwork_generator at the next iteration, so that it can adapt
its search space. When None, the subnetwork_generator generate_candidates()
method will receive empty Lists for their previous_ensemble_reports and all_reports argu-
ments.

• use_bias – Whether to add a bias term to the ensemble’s logits. Adding a bias allows
the ensemble to learn a shift in the data, often leading to more stable training and better
predictions.

10 Chapter 1. adanet

adanet Documentation, Release [0.5.0]

• metric_fn – A function for adding custom evaluation metrics, which should obey the
following signature:

– Args: Can only have the following three arguments in any order: - predictions: Predic-
tions Tensor or dict of Tensor created by

given head.

* features: Input dict of Tensor objects created by input_fn which is given to estima-
tor.evaluate as an argument.

* labels: Labels Tensor or dict of Tensor (for multi-head) created by input_fn which is
given to estimator.evaluate as an argument.

– Returns: Dict of metric results keyed by name. Final metrics are a union of this and head’s
existing metrics. If there is a name conflict between this and head‘s existing metrics, this
will override the existing one. The values of the dict are the results of calling a metric
function, namely a ‘(metric_tensor, update_op) tuple.

• force_grow – Boolean override that forces the ensemble to grow by one subnetwork
at the end of each iteration. Normally at the end of each iteration, AdaNet selects the
best candidate ensemble according to its performance on the AdaNet objective. In some
cases, the best ensemble is the previous_ensemble as opposed to one that includes a newly
trained subnetwork. When True, the algorithm will not select the previous_ensemble as the
best candidate, and will ensure that after n iterations the final ensemble is composed of n
subnetworks.

• replicate_ensemble_in_training – Whether to rebuild the frozen subnetworks
of the ensemble in training mode, which can change the outputs of the frozen subnetworks
in the ensemble. When False and during candidate training, the frozen subnetworks in
the ensemble are in prediction mode, so training-only ops like dropout are not applied to
them. When True and training the candidates, the frozen subnetworks will be in training
mode as well, so they will apply training-only ops like dropout. This argument is useful for
regularizing learning mixture weights, or for making training-only side inputs available in
subsequent iterations. For most use-cases, this should be False.

• adanet_loss_decay – Float decay for the exponential-moving-average of the AdaNet
objective throughout training. This moving average is a data- driven way tracking the best
candidate with only the training set.

• worker_wait_timeout_secs – Float number of seconds for workers to wait for chief
to prepare the next iteration during distributed training. This is needed to prevent workers
waiting indefinitely for a chief that may have crashed or been turned down. When the
timeout is exceeded, the worker exits the train loop. In situations where the chief job is
much slower than the worker jobs, this timeout should be increased.

• model_dir – Directory to save model parameters, graph and etc. This can also be used to
load checkpoints from the directory into a estimator to continue training a previously saved
model.

• report_dir – Directory where the adanet.subnetwork.MaterializedReport‘s material-
ized by ‘report_materializer would be saved. If report_materializer is None, this will not
save anything. If None or empty string, defaults to “<model_dir>/report”.

• config – RunConfig object to configure the runtime settings.

• **kwargs – Extra keyword args passed to the parent.

Returns An Estimator instance.

1.1. Estimators 11

adanet Documentation, Release [0.5.0]

Raises

• ValueError – If subnetwork_generator is None.

• ValueError – If max_iteration_steps is <= 0.

eval_dir(name=None)
Shows the directory name where evaluation metrics are dumped.

Parameters name – Name of the evaluation if user needs to run multiple evaluations on different
data sets, such as on training data vs test data. Metrics for different evaluations are saved in
separate folders, and appear separately in tensorboard.

Returns A string which is the path of directory contains evaluation metrics.

evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)
Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data. Evaluates until: - steps batches are processed,
or - input_fn raises an end-of-input exception (tf.errors.OutOfRangeError or StopIteration).

Parameters

• input_fn – A function that constructs the input data for evaluation. See [Premade Esti-
mators](https://tensorflow.org/guide/premade#create_input_functions) for more informa-
tion. The function should construct and return one of the following: * A tf.data.Dataset
object: Outputs of Dataset object must be a tuple (features, labels) with same constraints
as below. * A tuple (features, labels): Where features is a tf.Tensor or a dictionary of
string feature name to Tensor and labels is a Tensor or a dictionary of string label name
to Tensor. Both features and labels are consumed by model_fn. They should satisfy the
expectation of model_fn from inputs.

• steps – Number of steps for which to evaluate model. If None, evaluates until input_fn
raises an end-of-input exception.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the evaluation call.

• checkpoint_path – Path of a specific checkpoint to evaluate. If None, the latest
checkpoint in model_dir is used. If there are no checkpoints in model_dir, evaluation is
run with newly initialized Variables instead of ones restored from checkpoint.

• name – Name of the evaluation if user needs to run multiple evaluations on different data
sets, such as on training data vs test data. Metrics for different evaluations are saved in
separate folders, and appear separately in tensorboard.

Returns A dict containing the evaluation metrics specified in model_fn keyed by name, as well
as an entry global_step which contains the value of the global step for which this evaluation
was performed. For canned estimators, the dict contains the loss (mean loss per mini-batch)
and the average_loss (mean loss per sample). Canned classifiers also return the accuracy.
Canned regressors also return the label/mean and the prediction/mean.

Raises

• ValueError – If steps <= 0.

• ValueError – If no model has been trained, namely model_dir, or the given check-
point_path is empty.

export_saved_model(export_dir_base, serving_input_receiver_fn, assets_extra=None,
as_text=False, checkpoint_path=None)

Exports inference graph as a SavedModel into the given dir.

12 Chapter 1. adanet

https://tensorflow.org/guide/premade#create_input_functions

adanet Documentation, Release [0.5.0]

For a detailed guide, see [Using SavedModel with Estimators](https://tensorflow.org/guide/saved_model#
using_savedmodel_with_estimators).

This method builds a new graph by first calling the serving_input_receiver_fn to obtain feature Tensor‘s,
and then calling this ‘Estimator’s model_fn to generate the model graph based on those features. It restores
the given checkpoint (or, lacking that, the most recent checkpoint) into this graph in a fresh session. Finally
it creates a timestamped export directory below the given export_dir_base, and writes a SavedModel into
it containing a single tf.MetaGraphDef saved from this session.

The exported MetaGraphDef will provide one SignatureDef for each element of the ex-
port_outputs dict returned from the model_fn, named using the same keys. One of these keys
is always tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating
which signature will be served when a serving request does not specify one. For each signature, the outputs
are provided by the corresponding tf.estimator.export.ExportOutput‘s, and the inputs are always the input
receivers provided by the ‘serving_input_receiver_fn.

Extra assets may be written into the SavedModel via the assets_extra argument. This should be a dict,
where each key gives a destination path (including the filename) relative to the assets.extra directory. The
corresponding value gives the full path of the source file to be copied. For example, the simple case of
copying a single file without renaming it is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

Parameters

• export_dir_base – A string containing a directory in which to create timestamped
subdirectories containing exported ‘SavedModel‘s.

• serving_input_receiver_fn – A function that takes no ar-
gument and returns a tf.estimator.export.ServingInputReceiver or
tf.estimator.export.TensorServingInputReceiver.

• assets_extra – A dict specifying how to populate the assets.extra directory within the
exported SavedModel, or None if no extra assets are needed.

• as_text – whether to write the SavedModel proto in text format.

• checkpoint_path – The checkpoint path to export. If None (the default), the most
recent checkpoint found within the model directory is chosen.

Returns The string path to the exported directory.

Raises

• ValueError – if no serving_input_receiver_fn is provided, no

• export_outputs are provided, or no checkpoint can be found.

export_savedmodel(export_dir_base, serving_input_receiver_fn, assets_extra=None,
as_text=False, checkpoint_path=None, strip_default_attrs=False)

Exports inference graph as a SavedModel into the given dir.

Note that export_to_savedmodel will be renamed to export_saved_model in TensorFlow 2.0. At that time,
export_to_savedmodel without the additional underscore will be available only through tf.compat.v1.

Please see tf.estimator.Estimator.export_saved_model for more information.

There is one additional arg versus the new method:

strip_default_attrs: This parameter is going away in TF 2.0, and the new behavior will automat-
ically strip all default attributes. Boolean. If True, default-valued attributes will be re-
moved from the ‘NodeDef‘s. For a detailed guide, see [Stripping Default-Valued At-
tributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/
README.md#stripping-default-valued-attributes).

1.1. Estimators 13

https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators
https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes

adanet Documentation, Release [0.5.0]

get_variable_names()
Returns list of all variable names in this model.

Returns List of names.

Raises ValueError – If the Estimator has not produced a checkpoint yet.

get_variable_value(name)
Returns value of the variable given by name.

Parameters name – string or a list of string, name of the tensor.

Returns Numpy array - value of the tensor.

Raises ValueError – If the Estimator has not produced a checkpoint yet.

latest_checkpoint()
Finds the filename of the latest saved checkpoint file in model_dir.

Returns The full path to the latest checkpoint or None if no checkpoint was found.

model_fn
Returns the model_fn which is bound to self.params.

Returns def model_fn(features, labels, mode, config)

Return type The model_fn with following signature

predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None,
yield_single_examples=True)

Yields predictions for given features.

Please note that interleaving two predict outputs does not work. See: [issue/20506](https://github.com/
tensorflow/tensorflow/issues/20506#issuecomment-422208517)

Parameters

• input_fn – A function that constructs the features. Prediction continues un-
til input_fn raises an end-of-input exception (tf.errors.OutOfRangeError or StopIter-
ation). See [Premade Estimators](https://tensorflow.org/guide/premade_estimators#
create_input_functions) for more information. The function should construct and return
one of the following:

– A tf.data.Dataset object: Outputs of Dataset object must have same constraints as be-
low.

– features: A tf.Tensor or a dictionary of string feature name to Tensor. features are
consumed by model_fn. They should satisfy the expectation of model_fn from inputs.

– A tuple, in which case the first item is extracted as features.

• predict_keys – list of str, name of the keys to predict. It is used if the
tf.estimator.EstimatorSpec.predictions is a dict. If predict_keys is used then rest of the
predictions will be filtered from the dictionary. If None, returns all.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the prediction call.

• checkpoint_path – Path of a specific checkpoint to predict. If None, the latest check-
point in model_dir is used. If there are no checkpoints in model_dir, prediction is run with
newly initialized Variables instead of ones restored from checkpoint.

• yield_single_examples – If False, yields the whole batch as returned by the
model_fn instead of decomposing the batch into individual elements. This is useful if
model_fn returns some tensors whose first dimension is not equal to the batch size.

14 Chapter 1. adanet

https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517
https://tensorflow.org/guide/premade_estimators#create_input_functions
https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release [0.5.0]

Yields Evaluated values of predictions tensors.

Raises

• ValueError – Could not find a trained model in model_dir.

• ValueError – If batch length of predictions is not the same and yield_single_examples
is True.

• ValueError – If there is a conflict between predict_keys and predictions. For example
if predict_keys is not None but tf.estimator.EstimatorSpec.predictions is not a dict.

train(input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)
Trains a model given training data input_fn.

Parameters

• input_fn – A function that provides input data for training as minibatches. See
[Premade Estimators](https://tensorflow.org/guide/premade_estimators#create_input_
functions) for more information. The function should construct and return one of the
following: * A tf.data.Dataset object: Outputs of Dataset object must be a tuple (features,
labels) with same constraints as below. * A tuple (features, labels): Where features is
a tf.Tensor or a dictionary of string feature name to Tensor and labels is a Tensor or a
dictionary of string label name to Tensor. Both features and labels are consumed by
model_fn. They should satisfy the expectation of model_fn from inputs.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the training loop.

• steps – Number of steps for which to train the model. If None, train forever or train until
input_fn generates the tf.errors.OutOfRange error or StopIteration exception. steps works
incrementally. If you call two times train(steps=10) then training occurs in total 20 steps.
If OutOfRange or StopIteration occurs in the middle, training stops before 20 steps. If you
don’t want to have incremental behavior please set max_steps instead. If set, max_steps
must be None.

• max_steps – Number of total steps for which to train model. If None, train forever or
train until input_fn generates the tf.errors.OutOfRange error or StopIteration exception. If
set, steps must be None. If OutOfRange or StopIteration occurs in the middle, training
stops before max_steps steps. Two calls to train(steps=100) means 200 training iterations.
On the other hand, two calls to train(max_steps=100) means that the second call will not
do any iteration since first call did all 100 steps.

• saving_listeners – list of CheckpointSaverListener objects. Used for callbacks that
run immediately before or after checkpoint savings.

Returns self, for chaining.

Raises

• ValueError – If both steps and max_steps are not None.

• ValueError – If either steps or max_steps <= 0.

1.1. Estimators 15

https://tensorflow.org/guide/premade_estimators#create_input_functions
https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release [0.5.0]

1.1.3 TPUEstimator

class adanet.TPUEstimator(head, subnetwork_generator, max_iteration_steps, mix-
ture_weight_type=’scalar’, mixture_weight_initializer=None,
warm_start_mixture_weights=False, adanet_lambda=0.0,
adanet_beta=0.0, evaluator=None, report_materializer=None,
use_bias=False, metric_fn=None, force_grow=False, repli-
cate_ensemble_in_training=False, adanet_loss_decay=0.9,
worker_wait_timeout_secs=7200, model_dir=None, re-
port_dir=None, config=None, use_tpu=True, train_batch_size=None,
eval_batch_size=None)

Bases: adanet.core.estimator.Estimator, tensorflow.contrib.tpu.python.tpu.
tpu_estimator.TPUEstimator

An adanet.Estimator capable of running on TPU.

If running on TPU, all summary calls are rewired to be no-ops during training.

WARNING: this API is highly experimental, unstable, and can change without warning.

eval_dir(name=None)
Shows the directory name where evaluation metrics are dumped.

Parameters name – Name of the evaluation if user needs to run multiple evaluations on different
data sets, such as on training data vs test data. Metrics for different evaluations are saved in
separate folders, and appear separately in tensorboard.

Returns A string which is the path of directory contains evaluation metrics.

evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)
Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data. Evaluates until: - steps batches are processed,
or - input_fn raises an end-of-input exception (tf.errors.OutOfRangeError or StopIteration).

Parameters

• input_fn – A function that constructs the input data for evaluation. See [Premade Esti-
mators](https://tensorflow.org/guide/premade#create_input_functions) for more informa-
tion. The function should construct and return one of the following: * A tf.data.Dataset
object: Outputs of Dataset object must be a tuple (features, labels) with same constraints
as below. * A tuple (features, labels): Where features is a tf.Tensor or a dictionary of
string feature name to Tensor and labels is a Tensor or a dictionary of string label name
to Tensor. Both features and labels are consumed by model_fn. They should satisfy the
expectation of model_fn from inputs.

• steps – Number of steps for which to evaluate model. If None, evaluates until input_fn
raises an end-of-input exception.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the evaluation call.

• checkpoint_path – Path of a specific checkpoint to evaluate. If None, the latest
checkpoint in model_dir is used. If there are no checkpoints in model_dir, evaluation is
run with newly initialized Variables instead of ones restored from checkpoint.

• name – Name of the evaluation if user needs to run multiple evaluations on different data
sets, such as on training data vs test data. Metrics for different evaluations are saved in
separate folders, and appear separately in tensorboard.

Returns A dict containing the evaluation metrics specified in model_fn keyed by name, as well
as an entry global_step which contains the value of the global step for which this evaluation

16 Chapter 1. adanet

https://tensorflow.org/guide/premade#create_input_functions

adanet Documentation, Release [0.5.0]

was performed. For canned estimators, the dict contains the loss (mean loss per mini-batch)
and the average_loss (mean loss per sample). Canned classifiers also return the accuracy.
Canned regressors also return the label/mean and the prediction/mean.

Raises

• ValueError – If steps <= 0.

• ValueError – If no model has been trained, namely model_dir, or the given check-
point_path is empty.

export_saved_model(export_dir_base, serving_input_receiver_fn, assets_extra=None,
as_text=False, checkpoint_path=None)

Exports inference graph as a SavedModel into the given dir.

For a detailed guide, see [Using SavedModel with Estimators](https://tensorflow.org/guide/saved_model#
using_savedmodel_with_estimators).

This method builds a new graph by first calling the serving_input_receiver_fn to obtain feature Tensor‘s,
and then calling this ‘Estimator’s model_fn to generate the model graph based on those features. It restores
the given checkpoint (or, lacking that, the most recent checkpoint) into this graph in a fresh session. Finally
it creates a timestamped export directory below the given export_dir_base, and writes a SavedModel into
it containing a single tf.MetaGraphDef saved from this session.

The exported MetaGraphDef will provide one SignatureDef for each element of the ex-
port_outputs dict returned from the model_fn, named using the same keys. One of these keys
is always tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating
which signature will be served when a serving request does not specify one. For each signature, the outputs
are provided by the corresponding tf.estimator.export.ExportOutput‘s, and the inputs are always the input
receivers provided by the ‘serving_input_receiver_fn.

Extra assets may be written into the SavedModel via the assets_extra argument. This should be a dict,
where each key gives a destination path (including the filename) relative to the assets.extra directory. The
corresponding value gives the full path of the source file to be copied. For example, the simple case of
copying a single file without renaming it is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

Parameters

• export_dir_base – A string containing a directory in which to create timestamped
subdirectories containing exported ‘SavedModel‘s.

• serving_input_receiver_fn – A function that takes no ar-
gument and returns a tf.estimator.export.ServingInputReceiver or
tf.estimator.export.TensorServingInputReceiver.

• assets_extra – A dict specifying how to populate the assets.extra directory within the
exported SavedModel, or None if no extra assets are needed.

• as_text – whether to write the SavedModel proto in text format.

• checkpoint_path – The checkpoint path to export. If None (the default), the most
recent checkpoint found within the model directory is chosen.

Returns The string path to the exported directory.

Raises

• ValueError – if no serving_input_receiver_fn is provided, no

• export_outputs are provided, or no checkpoint can be found.

export_savedmodel(export_dir_base, serving_input_receiver_fn, assets_extra=None,
as_text=False, checkpoint_path=None, strip_default_attrs=False)

Exports inference graph as a SavedModel into the given dir.

1.1. Estimators 17

https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators
https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators

adanet Documentation, Release [0.5.0]

Note that export_to_savedmodel will be renamed to export_saved_model in TensorFlow 2.0. At that time,
export_to_savedmodel without the additional underscore will be available only through tf.compat.v1.

Please see tf.estimator.Estimator.export_saved_model for more information.

There is one additional arg versus the new method:

strip_default_attrs: This parameter is going away in TF 2.0, and the new behavior will automat-
ically strip all default attributes. Boolean. If True, default-valued attributes will be re-
moved from the ‘NodeDef‘s. For a detailed guide, see [Stripping Default-Valued At-
tributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/
README.md#stripping-default-valued-attributes).

get_variable_names()
Returns list of all variable names in this model.

Returns List of names.

Raises ValueError – If the Estimator has not produced a checkpoint yet.

get_variable_value(name)
Returns value of the variable given by name.

Parameters name – string or a list of string, name of the tensor.

Returns Numpy array - value of the tensor.

Raises ValueError – If the Estimator has not produced a checkpoint yet.

latest_checkpoint()
Finds the filename of the latest saved checkpoint file in model_dir.

Returns The full path to the latest checkpoint or None if no checkpoint was found.

model_fn
Returns the model_fn which is bound to self.params.

Returns def model_fn(features, labels, mode, config)

Return type The model_fn with following signature

predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None,
yield_single_examples=True)

Yields predictions for given features.

Please note that interleaving two predict outputs does not work. See: [issue/20506](https://github.com/
tensorflow/tensorflow/issues/20506#issuecomment-422208517)

Parameters

• input_fn – A function that constructs the features. Prediction continues un-
til input_fn raises an end-of-input exception (tf.errors.OutOfRangeError or StopIter-
ation). See [Premade Estimators](https://tensorflow.org/guide/premade_estimators#
create_input_functions) for more information. The function should construct and return
one of the following:

– A tf.data.Dataset object: Outputs of Dataset object must have same constraints as be-
low.

– features: A tf.Tensor or a dictionary of string feature name to Tensor. features are
consumed by model_fn. They should satisfy the expectation of model_fn from inputs.

– A tuple, in which case the first item is extracted as features.

18 Chapter 1. adanet

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517
https://tensorflow.org/guide/premade_estimators#create_input_functions
https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release [0.5.0]

• predict_keys – list of str, name of the keys to predict. It is used if the
tf.estimator.EstimatorSpec.predictions is a dict. If predict_keys is used then rest of the
predictions will be filtered from the dictionary. If None, returns all.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the prediction call.

• checkpoint_path – Path of a specific checkpoint to predict. If None, the latest check-
point in model_dir is used. If there are no checkpoints in model_dir, prediction is run with
newly initialized Variables instead of ones restored from checkpoint.

• yield_single_examples – If False, yields the whole batch as returned by the
model_fn instead of decomposing the batch into individual elements. This is useful if
model_fn returns some tensors whose first dimension is not equal to the batch size.

Yields Evaluated values of predictions tensors.

Raises

• ValueError – Could not find a trained model in model_dir.

• ValueError – If batch length of predictions is not the same and yield_single_examples
is True.

• ValueError – If there is a conflict between predict_keys and predictions. For example
if predict_keys is not None but tf.estimator.EstimatorSpec.predictions is not a dict.

train(input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)
Trains a model given training data input_fn.

Parameters

• input_fn – A function that provides input data for training as minibatches. See
[Premade Estimators](https://tensorflow.org/guide/premade_estimators#create_input_
functions) for more information. The function should construct and return one of the
following: * A tf.data.Dataset object: Outputs of Dataset object must be a tuple (features,
labels) with same constraints as below. * A tuple (features, labels): Where features is
a tf.Tensor or a dictionary of string feature name to Tensor and labels is a Tensor or a
dictionary of string label name to Tensor. Both features and labels are consumed by
model_fn. They should satisfy the expectation of model_fn from inputs.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the training loop.

• steps – Number of steps for which to train the model. If None, train forever or train until
input_fn generates the tf.errors.OutOfRange error or StopIteration exception. steps works
incrementally. If you call two times train(steps=10) then training occurs in total 20 steps.
If OutOfRange or StopIteration occurs in the middle, training stops before 20 steps. If you
don’t want to have incremental behavior please set max_steps instead. If set, max_steps
must be None.

• max_steps – Number of total steps for which to train model. If None, train forever or
train until input_fn generates the tf.errors.OutOfRange error or StopIteration exception. If
set, steps must be None. If OutOfRange or StopIteration occurs in the middle, training
stops before max_steps steps. Two calls to train(steps=100) means 200 training iterations.
On the other hand, two calls to train(max_steps=100) means that the second call will not
do any iteration since first call did all 100 steps.

• saving_listeners – list of CheckpointSaverListener objects. Used for callbacks that
run immediately before or after checkpoint savings.

Returns self, for chaining.

1.1. Estimators 19

https://tensorflow.org/guide/premade_estimators#create_input_functions
https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release [0.5.0]

Raises

• ValueError – If both steps and max_steps are not None.

• ValueError – If either steps or max_steps <= 0.

1.2 Ensembles

Collections representing learned combinations of subnetworks.

1.2.1 MixtureWeightType

class adanet.MixtureWeightType
Mixture weight types available for learning subnetwork contributions.

The following mixture weight types are defined:

• SCALAR: Produces a rank 0 Tensor mixture weight.

• VECTOR: Produces a rank 1 Tensor mixture weight.

• MATRIX: Produces a rank 2 Tensor mixture weight.

1.2.2 WeightedSubnetwork

class adanet.WeightedSubnetwork
An AdaNet weighted subnetwork.

A weighted subnetwork is a weight ‘w’ applied to a subnetwork’s last layer ‘u’. The results is the weighted
subnetwork’s logits, regularized by its complexity.

Parameters

• name – String name of subnetwork as defined by its adanet.subnetwork.Builder.

• iteration_number – Integer iteration when the subnetwork was created.

• weight – The weight tf.Tensor or dict of string to weight tf.Tensor (for multi-
head) to apply to this subnetwork. The AdaNet paper refers to this weight as ‘w’ in Equa-
tions (4), (5), and (6).

• logits – The output tf.Tensor or dict of string to weight tf.Tensor (for multi-
head) after the matrix multiplication of weight and the subnetwork’s last_layer(). The
output’s shape is [batch_size, logits_dimension]. It is equivalent to a linear logits layer in a
neural network.

• subnetwork – The adanet.subnetwork.Subnetwork to weight.

Returns An adanet.WeightedSubnetwork object.

1.2.3 Ensemble

class adanet.Ensemble
An AdaNet ensemble.

20 Chapter 1. adanet

adanet Documentation, Release [0.5.0]

An ensemble is a collection of subnetworks which forms a neural network through the weighted sum of their out-
puts. It is represented by ‘f’ throughout the AdaNet paper. Its component subnetworks’ weights are complexity
regularized (Gamma) as defined in Equation (4).

Parameters

• weighted_subnetworks – List of adanet.WeightedSubnetwork instances that
form this ensemble. Ordered from first to most recent.

• bias – Bias term tf.Tensor or dict of string to bias term tf.Tensor (for multi-head)
for the ensemble’s logits.

• logits – Logits tf.Tensor or dict of string to logits tf.Tensor (for multi-head).
The result of the function ‘f’ as defined in Section 5.1 which is the sum of the logits of all
adanet.WeightedSubnetwork instances in ensemble.

Returns An adanet.Ensemble instance.

1.3 Evaluator

Measures adanet.Ensemble performance on a given dataset.

1.3.1 Evaluator

class adanet.Evaluator(input_fn, steps=None)
Evaluates candidate ensemble performance.

Parameters

• input_fn – Input function returning a tuple of: features - Dictionary of string feature
name to Tensor. labels - Tensor of labels.

• steps – Number of steps for which to evaluate the ensembles. If an OutOfRangeError
occurs, evaluation stops. If set to None, will iterate the dataset until all inputs are exhausted.

Returns An adanet.Evaluator instance.

evaluate_adanet_losses(sess, adanet_losses)
Evaluates the given AdaNet objectives on the data from input_fn.

The candidates are fed the same batches of features and labels as provided by input_fn, and their losses are
computed and summed over steps batches.

Parameters

• sess – Session instance with most recent variable values loaded.

• adanet_losses – List of AdaNet loss Tensors.

Returns List of evaluated AdaNet losses.

input_fn
Return the input_fn.

steps
Return the number of evaluation steps.

1.3. Evaluator 21

adanet Documentation, Release [0.5.0]

1.4 Summary

Extends tf.summary to power AdaNet’s TensorBoard integration.

1.4.1 Summary

class adanet.Summary
Interface for writing summaries to Tensorboard.

audio(name, tensor, sample_rate, max_outputs=3, family=None)
Outputs a tf.Summary protocol buffer with audio.

The summary has up to max_outputs summary values containing audio. The audio is built from tensor
which must be 3-D with shape [batch_size, frames, channels] or 2-D with shape [batch_size, frames]. The
values are assumed to be in the range of [-1.0, 1.0] with a sample rate of sample_rate.

The tag in the outputted tf.Summary.Value protobufs is generated based on the name, with a suffix depend-
ing on the max_outputs setting:

• If max_outputs is 1, the summary value tag is ‘name/audio’.

• If max_outputs is greater than 1, the summary value tags are

generated sequentially as ‘name/audio/0’, ‘name/audio/1’, etc

Parameters

• name – A name for the generated node. Will also serve as a series name in TensorBoard.

• tensor – A 3-D float32 Tensor of shape [batch_size, frames, channels] or a 2-D float32
Tensor of shape [batch_size, frames].

• sample_rate – A Scalar float32 Tensor indicating the sample rate of the signal in hertz.

• max_outputs – Max number of batch elements to generate audio for.

• family – Optional; if provided, used as the prefix of the summary tag name, which
controls the tab name used for display on Tensorboard.

Returns A scalar Tensor of type string. The serialized tf.Summary protocol buffer.

histogram(name, values, family=None)
Outputs a tf.Summary protocol buffer with a histogram.

Adding a histogram summary makes it possible to visualize your data’s distribution in TensorBoard. You
can see a detailed explanation of the TensorBoard histogram dashboard [here](https://www.tensorflow.org/
get_started/tensorboard_histograms).

The generated [tf.Summary](tensorflow/core/framework/summary.proto) has one summary value contain-
ing a histogram for values.

This op reports an InvalidArgument error if any value is not finite.

Parameters

• name – A name for the generated node. Will also serve as a series name in TensorBoard.

• values – A real numeric Tensor. Any shape. Values to use to build the histogram.

• family – Optional; if provided, used as the prefix of the summary tag name, which
controls the tab name used for display on Tensorboard.

22 Chapter 1. adanet

https://www.tensorflow.org/get_started/tensorboard_histograms
https://www.tensorflow.org/get_started/tensorboard_histograms

adanet Documentation, Release [0.5.0]

Returns A scalar Tensor of type string. The serialized tf.Summary protocol buffer.

image(name, tensor, max_outputs=3, family=None)
Outputs a tf.Summary protocol buffer with images.

The summary has up to max_outputs summary values containing images. The images are built from tensor
which must be 4-D with shape [batch_size, height, width, channels] and where channels can be:

• 1: tensor is interpreted as Grayscale.

• 3: tensor is interpreted as RGB.

• 4: tensor is interpreted as RGBA.

The images have the same number of channels as the input tensor. For float input, the values are normalized
one image at a time to fit in the range [0, 255]. uint8 values are unchanged. The op uses two different
normalization algorithms:

• If the input values are all positive, they are rescaled so the largest

one is 255. * If any input value is negative, the values are shifted so input value 0.0

is at 127. They are then rescaled so that either the smallest value is 0, or the largest one is 255.

The tag in the outputted tf.Summary.Value protobufs is generated based on the name, with a suffix depend-
ing on the max_outputs setting:

• If max_outputs is 1, the summary value tag is ‘name/image’.

• If max_outputs is greater than 1, the summary value tags are

generated sequentially as ‘name/image/0’, ‘name/image/1’, etc.

Parameters

• name – A name for the generated node. Will also serve as a series name in TensorBoard.

• tensor – A 4-D uint8 or float32 Tensor of shape [batch_size, height, width, channels]
where channels is 1, 3, or 4.

• max_outputs – Max number of batch elements to generate images for.

• family – Optional; if provided, used as the prefix of the summary tag name, which
controls the tab name used for display on Tensorboard.

Returns A scalar Tensor of type string. The serialized tf.Summary protocol buffer.

scalar(name, tensor, family=None)
Outputs a tf.Summary protocol buffer containing a single scalar value.

The generated tf.Summary has a Tensor.proto containing the input Tensor.

Parameters

• name – A name for the generated node. Will also serve as the series name in TensorBoard.

• tensor – A real numeric Tensor containing a single value.

• family – Optional; if provided, used as the prefix of the summary tag name, which
controls the tab name used for display on Tensorboard.

Returns A scalar Tensor of type string. Which contains a tf.Summary protobuf.

Raises ValueError – If tensor has the wrong shape or type.

1.4. Summary 23

adanet Documentation, Release [0.5.0]

1.5 ReportMaterializer

1.5.1 ReportMaterializer

class adanet.ReportMaterializer(input_fn, steps=None)
Materializes reports.

Specifically it materializes a subnetwork’s adanet.subnetwork.Report instances into adanet.
subnetwork.MaterializedReport instances.

Requires an input function input_fn that returns a tuple of:

• features: Dictionary of string feature name to Tensor.

• labels: Tensor of labels.

Parameters

• input_fn – The input function.

• steps – Number of steps for which to materialize the ensembles. If an OutOfRangeError
occurs, materialization stops. If set to None, will iterate the dataset until all inputs are
exhausted.

Returns A ReportMaterializer instance.

input_fn
Returns the input_fn that materialize_subnetwork_reports would run on.

Even though this property appears to be unused, it would be used to build the AdaNet model graph inside
AdaNet estimator.train(). After the graph is built, the queue_runners are started and the initializers are run,
AdaNet estimator.train() passes its tf.Session as an argument to materialize_subnetwork_reports(), thus
indirectly making input_fn available to materialize_subnetwork_reports.

materialize_subnetwork_reports(sess, iteration_number, subnetwork_reports, in-
cluded_subnetwork_names)

Materializes the Tensor objects in subnetwork_reports using sess.

This converts the Tensors in subnetwork_reports to ndarrays, logs the progress, converts the ndarrays to
python primitives, then packages them into adanet.subnetwork.MaterializedReports.

Parameters

• sess – Session instance with most recent variable values loaded.

• iteration_number – Integer iteration number.

• subnetwork_reports – Dict mapping string names to subnetwork.Report objects to
be materialized.

• included_subnetwork_names – List of string names of the ‘subnetwork.Report‘s
that are included in the final ensemble.

Returns List of adanet.subnetwork.MaterializedReport objects.

steps
Return the number of steps.

24 Chapter 1. adanet

CHAPTER 2

adanet.subnetwork

Low-level APIs for defining custom subnetworks and search spaces.

2.1 Generators

Interfaces and containers for defining subnetworks, search spaces, and search algorithms.

2.1.1 Subnetwork

class adanet.subnetwork.Subnetwork
An AdaNet subnetwork.

In the AdaNet paper, an adanet.subnetwork.Subnetwork is are called a ‘subnetwork’, and indicated
by ‘h’. A collection of weighted subnetworks form an AdaNet ensemble.

Parameters

• last_layer – tf.Tensor output or dict of string to tf.Tensor outputs (for multi-
head) of the last layer of the subnetwork, i.e the layer before the logits layer. When the
mixture weight type is MATRIX, the AdaNet algorithm takes care of computing ensemble
mixture weights matrices (one per subnetwork) that multiply the various last layers of the
ensemble’s subnetworks, and regularize them using their subnetwork’s complexity. This
field is represented by ‘h’ in the AdaNet paper.

• logits – tf.Tensor logits or dict of string to tf.Tensor logits (for multi-head)
for training the subnetwork. These logits are not used in the ensemble’s outputs if the
mixture weight type is MATRIX, instead AdaNet learns its own logits (mixture weights)
from the subnetwork’s last_layers with complexity regularization. The logits are used in
the ensemble only when the mixture weights type is SCALAR or VECTOR. Even though the
logits are not used in the ensemble in some cases, they should always be supplied as adanet
uses the logits to train the subnetworks.

25

adanet Documentation, Release [0.5.0]

• complexity – A scalar tf.Tensor representing the complexity of the subnetwork’s ar-
chitecture. It is used for choosing the best subnetwork at each iteration, and for regularizing
the weighted outputs of more complex subnetworks.

• persisted_tensors – DEPRECATED. See shared. Optional nested dictionary
of string to tf.Tensor to persist across iterations. At the end of an iteration,
the tf.Tensor instances will be available to subnetworks in the next iterations,
whereas others that are not part of the Subnetwork will be pruned. This allows later
adanet.subnetwork.Subnetwork instances to dynamically build upon arbitrary
tf.Tensors from previous adanet.subnetwork.Subnetwork instances.

• shared – Optional Python object(s), primitive(s), or function(s) to share with subnetworks
within the same iteration or in future iterations.

Returns A validated adanet.subnetwork.Subnetwork object.

Raises

• ValueError – If last_layer is None.

• ValueError – If logits is None.

• ValueError – If logits is a dict but last_layer is not.

• ValueError – If last_layer is a dict but logits is not.

• ValueError – If complexity is None.

• ValueError – If persisted_tensors is present but not a dictionary.

• ValueError – If persisted_tensors contains an empty nested dictionary.

2.1.2 TrainOpSpec

class adanet.subnetwork.TrainOpSpec
A data structure for specifying training operations.

Parameters

• train_op – Op for the training step.

• chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the chief
worker during training.

• hooks – Iterable of tf.train.SessionRunHook objects to run on all workers during
training.

Returns A adanet.subnetwork.TrainOpSpec object.

2.1.3 Builder

class adanet.subnetwork.Builder
Bases: object

Interface for a subnetwork builder.

Given features, labels, and the best ensemble of subnetworks at iteration t-1, a Builder creates a Subnetwork to
add to a candidate ensemble at iteration t. These candidate ensembles are evaluated against one another at the
end of the iteration, and the best one is selected based on its complexity-regularized loss.

26 Chapter 2. adanet.subnetwork

adanet Documentation, Release [0.5.0]

build_mixture_weights_train_op(loss, var_list, logits, labels, iteration_step, summary)
Returns an op for training the ensemble’s mixture weights.

Allows AdaNet to learn the mixture weights of each subnetwork according to Equation (6).

This method will be called once after build_subnetwork.

Accessing the global step via tf.train.get_or_create_global_step() or tf.train.
get_global_step() within this scope will return an incrementable iteration step since the beginning
of the iteration.

Parameters

• loss – A tf.Tensor containing the ensemble’s loss to minimize.

• var_list – List of ensemble mixture weight tf.Variables to update as become part of
the training operation.

• logits – The ensemble’s logits tf.Tensor from applying the mixture weights and
bias to the ensemble’s subnetworks.

• labels – Labels tf.Tensor or a dictionary of string label name to tf.Tensor (for
multi-head).

• iteration_step – Integer tf.Tensor representing the step since the beginning of
the current iteration, as opposed to the global step.

• summary – An adanet.Summary for scoping summaries to individual subnetworks
in Tensorboard. Using tf.summary within this scope will use this adanet.Summary
under the hood.

Returns Either a train op or an adanet.subnetwork.TrainOpSpec.

build_subnetwork(features, labels, logits_dimension, training, iteration_step, summary, previ-
ous_ensemble=None)

Returns the candidate Subnetwork to add to the ensemble.

This method will be called only once, before build_subnetwork_train_op() and
build_mixture_weights_train_op() are called. This method should construct the candi-
date subnetwork’s graph operations and variables.

Accessing the global step via tf.train.get_or_create_global_step() or tf.train.
get_global_step() within this scope will return an incrementable iteration step since the beginning
of the iteration.

Parameters

• features – Input dict of tf.Tensor objects.

• labels – Labels tf.Tensor or a dictionary of string label name to tf.Tensor (for
multi-head). Can be None.

• logits_dimension – Size of the last dimension of the logits tf.Tensor. Typically,
logits have for shape [batch_size, logits_dimension].

• training – A python boolean indicating whether the graph is in training mode or pre-
diction mode.

• iteration_step – Integer tf.Tensor representing the step since the beginning of
the current iteration, as opposed to the global step.

• summary – An adanet.Summary for scoping summaries to individual subnetworks in
Tensorboard. Using tf.summary()within this scope will use this adanet.Summary
under the hood.

2.1. Generators 27

adanet Documentation, Release [0.5.0]

• previous_ensemble – The best adanet.Ensemble from iteration t-1. The cre-
ated subnetwork will extend the previous ensemble to form the adanet.Ensemble at
iteration t.

Returns An adanet.subnetwork.Subnetwork instance.

build_subnetwork_report()
Returns a subnetwork.Report to materialize and record.

This method will be called once after build_subnetwork(). Do NOT depend on variables created in
build_subnetwork_train_op() or build_mixture_weights_train_op(), because they
are not called before build_subnetwork_report() is called.

If it returns None, AdaNet records the name and standard eval metrics.

build_subnetwork_train_op(subnetwork, loss, var_list, labels, iteration_step, summary, previ-
ous_ensemble)

Returns an op for training a new subnetwork.

This method will be called once after build_subnetwork().

Accessing the global step via tf.train.get_or_create_global_step() or tf.train.
get_global_step() within this scope will return an incrementable iteration step since the beginning
of the iteration.

Parameters

• subnetwork – Newest subnetwork, that is not part of the previous_ensemble.

• loss – A tf.Tensor containing the subnetwork’s loss to minimize.

• var_list – List of subnetwork tf.Variable parameters to update as part of the
training operation.

• labels – Labels tf.Tensor or a dictionary of string label name to tf.Tensor (for
multi-head).

• iteration_step – Integer tf.Tensor representing the step since the beginning of
the current iteration, as opposed to the global step.

• summary – An adanet.Summary for scoping summaries to individual subnetworks in
Tensorboard. Using tf.summary within this scope will use this adanet.Summary under
the hood.

• previous_ensemble – The best Ensemble from iteration t-1. The created subnetwork
will extend the previous ensemble to form the Ensemble at iteration t. Is None for iteration
0.

Returns Either a train op or an adanet.subnetwork.TrainOpSpec.

name
Returns the unique name of this subnetwork within an iteration.

prune_previous_ensemble(previous_ensemble)
Specifies which subnetworks from the previous ensemble to keep.

The selected subnetworks from the previous ensemble will be kept in the candidate ensemble that includes
this subnetwork.

By default, none of the previous ensemble subnetworks are pruned.

Parameters previous_ensemble – adanet.Ensemble object.

Returns List of integer indices of weighted_subnetworks to keep.

28 Chapter 2. adanet.subnetwork

adanet Documentation, Release [0.5.0]

2.1.4 Generator

class adanet.subnetwork.Generator
Bases: object

Interface for a candidate subnetwork generator.

Given the ensemble of subnetworks at iteration t-1, this object is responsible for generating the set of candidate
subnetworks for iteration t that minimize the objective as part of an ensemble.

generate_candidates(previous_ensemble, iteration_number, previous_ensemble_reports,
all_reports)

Generates adanet.subnetwork.Builder instances for an iteration.

NOTE: Every call to generate_candidates() must be deterministic for the given arguments.

Parameters

• previous_ensemble – The best adanet.Ensemble from iteration t-1. DEP-
RECATED. We are transitioning away from the use of previous_ensemble in gen-
erate_candidates. New Generators should not use previous_ensemble in their im-
plementation of generate_candidates – please only use iteration_number, previ-
ous_ensemble_reports and all_reports.

• iteration_number – Python integer AdaNet iteration t, starting from 0.

• previous_ensemble_reports – List of adanet.subnetwork.
MaterializedReport instances corresponding to the Builders composing adanet.
Ensemble from iteration t-1. The first element in the list corresponds to the Builder
added in the first iteration. If a adanet.subnetwork.MaterializedReport is
not supplied to the estimator, previous_ensemble_report is None.

• all_reports – List of adanet.subnetwork.MaterializedReport in-
stances. If an adanet.subnetwork.ReportMaterializer is not supplied to the
estimator, all_reports is None. If adanet.subnetwork.ReportMaterializer is
supplied to the estimator and t=0, all_reports is an empty List. Otherwise, all_reports is
a sequence of Lists. Each element of the sequence is a List containing all the adanet.
subnetwork.MaterializedReport instances in an AdaNet iteration, starting from
iteration 0, and ending at iteration t-1.

Returns A list of adanet.subnetwork.Builder instances.

2.2 Reports

Containers for metadata about trained subnetworks.

2.2.1 Report

class adanet.subnetwork.Report
A container for data to be collected about a Subnetwork.

Parameters

• hparams – A dict mapping strings to python strings, ints, bools, or floats. It is meant to
contain the constants that define the adanet.subnetwork.Builder, such as dropout,
number of layers, or initial learning rate.

2.2. Reports 29

adanet Documentation, Release [0.5.0]

• attributes – A dict mapping strings to rank 0 Tensors of dtype string, int32, or float32.
It is meant to contain properties that may or may not change over the course of training the
adanet.subnetwork.Subnetwork, such as the number of parameters, the Lipschitz
constant, the L_2 norm of the weights, or learning rate at materialization time.

• metrics – Dict of metric results keyed by name. The values of the dict are the results of
calling a metric function, namely a (metric_tensor, update_op) tuple. metric_tensor should
be evaluated without any impact on state (typically is a pure computation results based on
variables.). For example, it should not trigger the update_op or requires any input fetching.
This is meant to contain metrics of interest, such as the training loss, complexity regularized
loss, or standard deviation of the last layer outputs.

Returns A validated adanet.subnetwork.Report object.

Raises ValueError – If validation fails.

2.2.2 MaterializedReport

class adanet.subnetwork.MaterializedReport
Data collected about a adanet.subnetwork.Subnetwork.

Parameters

• iteration_number – A python integer for the AdaNet iteration number, starting from
0.

• name – A string, which is either the name of the corresponding Builder, or “previ-
ous_ensemble” if it refers to the previous_ensemble.

• hparams – A dict mapping strings to python strings, ints, or floats. These are constants
passed from the author of the adanet.subnetwork.Builder that was used to con-
struct this adanet.subnetwork.Subnetwork. It is meant to contain the arguments
that defined the adanet.subnetwork.Builder, such as dropout, number of layers,
or initial learning rate.

• attributes – A dict mapping strings to python strings, ints, bools, or floats. These
are python primitives that come from materialized Tensors; these Tensors were defined
by the author of the adanet.subnetwork.Builder that was used to construct this
adanet.subnetwork.Subnetwork. It is meant to contain properties that may or
may not change over the course of training the adanet.subnetwork.Subnetwork,
such as the number of parameters, the Lipschitz constant, or the L_2 norm of the weights.

• metrics – A dict mapping strings to python strings, ints, or floats. These are
python primitives that come from metrics that were evaluated on the trained adanet.
subnetwork.Subnetwork over some dataset; these metrics were defined by the au-
thor of the adanet.subnetwork.Builder that was used to construct this adanet.
subnetwork.Subnetwork. It is meant to contain performance metrics or measures
that could predict generalization, such as the training loss, complexity regularized loss, or
standard deviation of the last layer outputs.

• included_in_final_ensemble – A boolean denoting whether the associated
adanet.subnetwork.Subnetwork was included in the ensemble at the end of the
AdaNet iteration.

Returns An adanet.subnetwork.MaterializedReport object.

30 Chapter 2. adanet.subnetwork

CHAPTER 3

Indices and tables

• genindex

• modindex

31

adanet Documentation, Release [0.5.0]

32 Chapter 3. Indices and tables

Python Module Index

a
adanet, 3
adanet.subnetwork, 25

33

adanet Documentation, Release [0.5.0]

34 Python Module Index

Index

A
adanet (module), 3
adanet.subnetwork (module), 25
audio() (adanet.Summary method), 22
AutoEnsembleEstimator (class in adanet), 3

B
build_mixture_weights_train_op()

(adanet.subnetwork.Builder method), 26
build_subnetwork() (adanet.subnetwork.Builder

method), 27
build_subnetwork_report()

(adanet.subnetwork.Builder method), 28
build_subnetwork_train_op()

(adanet.subnetwork.Builder method), 28
Builder (class in adanet.subnetwork), 26

E
Ensemble (class in adanet), 20
Estimator (class in adanet), 9
eval_dir() (adanet.AutoEnsembleEstimator method),

5
eval_dir() (adanet.Estimator method), 12
eval_dir() (adanet.TPUEstimator method), 16
evaluate() (adanet.AutoEnsembleEstimator method),

5
evaluate() (adanet.Estimator method), 12
evaluate() (adanet.TPUEstimator method), 16
evaluate_adanet_losses() (adanet.Evaluator

method), 21
Evaluator (class in adanet), 21
export_saved_model()

(adanet.AutoEnsembleEstimator method),
6

export_saved_model() (adanet.Estimator
method), 12

export_saved_model() (adanet.TPUEstimator
method), 17

export_savedmodel()
(adanet.AutoEnsembleEstimator method),
6

export_savedmodel() (adanet.Estimator method),
13

export_savedmodel() (adanet.TPUEstimator
method), 17

G
generate_candidates()

(adanet.subnetwork.Generator method),
29

Generator (class in adanet.subnetwork), 29
get_variable_names()

(adanet.AutoEnsembleEstimator method),
7

get_variable_names() (adanet.Estimator
method), 13

get_variable_names() (adanet.TPUEstimator
method), 18

get_variable_value()
(adanet.AutoEnsembleEstimator method),
7

get_variable_value() (adanet.Estimator
method), 14

get_variable_value() (adanet.TPUEstimator
method), 18

H
histogram() (adanet.Summary method), 22

I
image() (adanet.Summary method), 23
input_fn (adanet.Evaluator attribute), 21
input_fn (adanet.ReportMaterializer attribute), 24

L
latest_checkpoint()

(adanet.AutoEnsembleEstimator method),
7

35

adanet Documentation, Release [0.5.0]

latest_checkpoint() (adanet.Estimator method),
14

latest_checkpoint() (adanet.TPUEstimator
method), 18

M
materialize_subnetwork_reports()

(adanet.ReportMaterializer method), 24
MaterializedReport (class in adanet.subnetwork),

30
MixtureWeightType (class in adanet), 20
model_fn (adanet.AutoEnsembleEstimator attribute), 7
model_fn (adanet.Estimator attribute), 14
model_fn (adanet.TPUEstimator attribute), 18

N
name (adanet.subnetwork.Builder attribute), 28

P
predict() (adanet.AutoEnsembleEstimator method),

7
predict() (adanet.Estimator method), 14
predict() (adanet.TPUEstimator method), 18
prune_previous_ensemble()

(adanet.subnetwork.Builder method), 28

R
Report (class in adanet.subnetwork), 29
ReportMaterializer (class in adanet), 24

S
scalar() (adanet.Summary method), 23
steps (adanet.Evaluator attribute), 21
steps (adanet.ReportMaterializer attribute), 24
Subnetwork (class in adanet.subnetwork), 25
Summary (class in adanet), 22

T
TPUEstimator (class in adanet), 16
train() (adanet.AutoEnsembleEstimator method), 8
train() (adanet.Estimator method), 15
train() (adanet.TPUEstimator method), 19
TrainOpSpec (class in adanet.subnetwork), 26

W
WeightedSubnetwork (class in adanet), 20

36 Index

	adanet
	adanet.subnetwork
	Indices and tables
	Python Module Index

