
adanet Documentation
Release 0.8.0

AdaNet Authors

Feb 03, 2020

Getting Started

1 Overview 3

2 Quick start 5

3 Tutorials 9

4 TensorBoard 11

5 Distributed training 13

6 TPU 15

7 Algorithm 17

8 Theory 19

9 adanet 21

10 adanet.ensemble 49

11 adanet.subnetwork 59

12 adanet.distributed 65

13 Indices and tables 69

Python Module Index 71

Index 73

i

ii

adanet Documentation, Release 0.8.0

AdaNet is a TensorFlow framework for fast and flexible AutoML with learning guarantees.

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal
expert intervention. AdaNet builds on recent AutoML efforts to be fast and flexible while providing learning guaran-
tees. Importantly, AdaNet provides a general framework for not only learning a neural network architecture, but also
for learning to ensemble to obtain even better models.

This project is based on the AdaNet algorithm, presented in “AdaNet: Adaptive Structural Learning of Artificial Neural
Networks” at ICML 2017, for learning the structure of a neural network as an ensemble of subnetworks.

AdaNet has the following goals:

• Ease of use: Provide familiar APIs (e.g. Keras, Estimator) for training, evaluating, and serving models.

• Speed: Scale with available compute and quickly produce high quality models.

• Flexibility: Allow researchers and practitioners to extend AdaNet to novel subnetwork architectures, search
spaces, and tasks.

• Learning guarantees: Optimize an objective that offers theoretical learning guarantees.

The following animation shows AdaNet adaptively growing an ensemble of neural networks. At each iteration, it
measures the ensemble loss for each candidate, and selects the best one to move onto the next iteration. At subsequent
iterations, the blue subnetworks are frozen, and only yellow subnetworks are trained:

AdaNet was first announced on the Google AI research blog: “Introducing AdaNet: Fast and Flexible AutoML with
Learning Guarantees”.

This is not an official Google product.

Getting Started 1

http://proceedings.mlr.press/v70/cortes17a.html
http://proceedings.mlr.press/v70/cortes17a.html
https://icml.cc/Conferences/2017
https://ai.googleblog.com/2018/10/introducing-adanet-fast-and-flexible.html
https://ai.googleblog.com/2018/10/introducing-adanet-fast-and-flexible.html

adanet Documentation, Release 0.8.0

2 Getting Started

CHAPTER 1

Overview

AdaNet is an extended implementation of AdaNet: Adaptive Structural Learning of Artificial Neural Networks by
[Cortes et al., ICML 2017], an algorithm for iteratively learning both the structure and weights of a neural network
as an ensemble of subnetworks.

1.1 Ensembles of subnetworks

In AdaNet, ensembles are first-class objects. Every model you train will be one form of an ensemble or another. An
ensemble is composed of one or more subnetworks whose outputs are combined via an ensembler.

Terminology.

Ensembles are model-agnostic, meaning a subnetwork can be as complex as deep neural network, or as simple as
an if-statement. All that matters is that for a given input tensor, the subnetworks’ outputs can be combined by the
ensembler to form a single prediction.

1.2 Adaptive architecture search

In the animation above, the AdaNet algorithm iteratively performs the following architecture search to grow an en-
semble of subnetworks:

1. Generates a pool of candidate subnetworks.

2. Trains the subnetworks in whatever manner the user defines.

3. Evaluates the performance of the subnetworks as part of the ensemble, which is an ensemble of one at the first
iteration.

4. Adds the subnetwork that most improves the ensemble performance to the ensemble for the next iteration.

5. Prunes the other subnetworks from the graph.

6. Adapts the subnetwork search space according to the information gained from the current iteration.

3

https://arxiv.org/abs/1607.01097
https://arxiv.org/abs/1607.01097

adanet Documentation, Release 0.8.0

7. Moves onto the next iteration.

8. Repeats.

1.3 Iteration lifecycle

Each AdaNet iteration has the given lifecycle:

AdaNet iteration lifecucle

Each of these concepts has an associated Python object:

• Subnetwork Generator and Subnetwork are defined in the adanet.subnetwork package.

• Ensemble Strategy, Ensembler, and Ensemble are defined in the adanet.ensemble package.

1.4 Design

AdaNet is designed to operate primarily inside of TensorFlow’s computation graph. This allows it to efficiently utilize
available resources like distributed compute, GPU, and TPU, using TensorFlow primitives.

AdaNet provides a unique adaptive computation graph, which can support building models that create and remove
ops and variables over time, but still have the optimizations and scalability of TensorFlow’s graph-mode. This adap-
tive graph enables users to develop progressively growing models (e.g. boosting style), develop architecture search
algorithms, and perform hyper-parameter tuning without needing to manage an external for-loop.

1.5 Example ensembles

Below are a few more examples of ensembles you can obtain with AdaNet depending on the search space you define.
First, there is an ensemble composed of increasingly complex neural network subnetworks whose outputs are simply
averaged:

Ensemble of subnetworks with different complexities.

Another common example is an ensemble learned on top of a shared embedding. Useful when the majority of the
model parameters are an embedding of a feature. The individual subnetworks’ predictions are combined using a
learned linear combination:

Subnetworks sharing a common embedding.

1.6 Quick start

Now that you are familiar with AdaNet, you can explore our quick start guide.

4 Chapter 1. Overview

https://adanet.readthedocs.io/en/latest/adanet.subnetwork.html
https://adanet.readthedocs.io/en/latest/adanet.ensemble.html

CHAPTER 2

Quick start

If you are already using tf.estimator.Estimator, the fastest way to get up and running with AdaNet is to
use the adanet.AutoEnsembleEstimator. This estimator will automatically convert a list of estimators into
subnetworks, and learn to ensemble them for you.

2.1 Import AdaNet

The first step is to import the adanet package:

import adanet

2.2 AutoEnsembleEstimator

Next you will want to define which estimators you want to ensemble. For example, if you don’t know if the
best model a linear model, or a neural network, or some combination, then you can try using tf.estimator.
LinearEstimator and tf.estimator.DNNEstimator as subnetworks:

import adanet
import tensorflow as tf

Define the model head for computing loss and evaluation metrics.
head = MultiClassHead(n_classes=10)

Feature columns define how to process examples.
feature_columns = ...

Learn to ensemble linear and neural network models.
estimator = adanet.AutoEnsembleEstimator(

head=head,
candidate_pool=lambda config: {

(continues on next page)

5

https://www.tensorflow.org/guide/estimators
https://adanet.readthedocs.io/en/latest/adanet.html#autoensembleestimator

adanet Documentation, Release 0.8.0

(continued from previous page)

"linear":
tf.estimator.LinearEstimator(

head=head,
feature_columns=feature_columns,
config=config,
optimizer=...),

"dnn":
tf.estimator.DNNEstimator(

head=head,
feature_columns=feature_columns,
config=config,
optimizer=...,
hidden_units=[1000, 500, 100])},

max_iteration_steps=50)

estimator.train(input_fn=train_input_fn, steps=100)
metrics = estimator.evaluate(input_fn=eval_input_fn)
predictions = estimator.predict(input_fn=predict_input_fn)

The above code will train both the linear and dnn subnetworks in parallel, and will average their predictions. After
max_iteration_steps=100 steps, the best subnetwork will compose the ensemble according to its performance
on the training set.

2.3 Ensemble strategies

The way AdaNet chooses which subnetworks to include in a candidate ensemble is via ensemble strategies.

2.3.1 Grow strategy

The default ensemble strategy is adanet.ensemble.GrowStrategy which will only select the subnetwork that
most improved the ensemble’s performance. The remaining subnetworks will be pruned from the graph.

2.3.2 All strategy

Suppose instead of only selecting the single best subnetwork, you want to ensemble all of the subnetworks, regard-
less of their individual performance. You can pass an instance of the adanet.ensemble.AllStrategy to the
adanet.AutoEnsembleEstimator constructor:

estimator = adanet.AutoEnsembleEstimator(
[...]
ensemble_strategies=[adanet.ensemble.AllStrategy()]
candidate_pool={

"linear": ...,
"dnn": ...,

},
[...])

6 Chapter 2. Quick start

adanet Documentation, Release 0.8.0

2.4 Tutorials

To play with AdaNet in Colab notebooks, and learn about more advanced features like customizing AdaNet and
training on TPU, see our tutorials section.

2.4. Tutorials 7

adanet Documentation, Release 0.8.0

8 Chapter 2. Quick start

CHAPTER 3

Tutorials

3.1 Notebooks

Play with AdaNet in our interactive Colab notebooks available on GitHub.

3.2 Misc

To learn more, please visit our quick start guide.

For more about the underlying algorithm, see the algorithm and theory pages.

9

https://github.com/tensorflow/adanet/tree/master/adanet/examples/tutorials

adanet Documentation, Release 0.8.0

10 Chapter 3. Tutorials

CHAPTER 4

TensorBoard

TensorBoard is AdaNet’s UI.

From TensorBoard, you can vizualize the performance of candidate ensembles and individual subnetworks over time,
visualize their architectures, and monitor statics.

11

https://www.tensorflow.org/guide/summaries_and_tensorboard

adanet Documentation, Release 0.8.0

12 Chapter 4. TensorBoard

CHAPTER 5

Distributed training

AdaNet uses the same distributed training model as tf.estimator.Estimator.

For training TensorFlow estimators on Google Cloud ML Engine, please see this guide.

5.1 Placement Strategies

Given a cluster of worker and parameter servers, AdaNet will manage distributed training automatically. When cre-
ating an AdaNet Estimator, you can specify the adanet.distributed.PlacementStrategy to decide
which subnetworks each worker will be responsible for training.

5.1.1 Replication Strategy

The default distributed training strategy is the same as the default tf.estimator.Estimator model: each
worker will create the full training graph, including all subnetworks and ensembles, and optimize all the trainable
parameters. Each variable will be randomly allocated to a parameter server to minimize bottlenecks in workers fetch-
ing them. Worker’s updates will be sent to the parameter servers which apply the updates to their managed variables.

Replication strategy

To learn more, see the implementation at adanet.distributed.ReplicationStrategy.

5.1.2 Round Robin Stategy (experimental)

A strategy that scales better than the Replication Strategy is the experimental Round Robin Stategy. Instead of repli-
cating the same graph on each worker, AdaNet will round robin assign workers to train a single subnetwork.

Round robin strategy

To learn more, see the implementation at adanet.distributed.RoundRobinStrategy.

13

https://cloud.google.com/blog/products/gcp/easy-distributed-training-with-tensorflow-using-tfestimatortrain-and-evaluate-on-cloud-ml-engine
https://adanet.readthedocs.io/en/latest/adanet.distributed.html#replicationstrategy
https://adanet.readthedocs.io/en/latest/adanet.distributed.html#roundrobinstrategy

adanet Documentation, Release 0.8.0

14 Chapter 5. Distributed training

CHAPTER 6

TPU

AdaNet officially supports TPU training, evaluation, and prediction via the adanet.TPUEstimator.

To get started, see our Colab notebook on TPU.

15

https://adanet.readthedocs.io/en/latest/adanet.html#tpuestimator
https://colab.research.google.com/github/tensorflow/adanet/blob/master/adanet/examples/tutorials/adanet_tpu.ipynb

adanet Documentation, Release 0.8.0

16 Chapter 6. TPU

CHAPTER 7

Algorithm

7.1 Neural architecture search

AutoML is a family of techniques and algorithms seeking to automatically solve supervised learning tasks. Recently,
researchers in AutoML have investigated whether we can automate learning the structure of a neural network for a
given dataset, automating a task that requires significant domain expertise. This subdomain known as neural archi-
tecture search has seen advances in the state-of-the-art using reinforcement learning [Zoph et al. ‘17], evolutionary
strategies [Real et al., ‘17], and gradient-based methods [Liu et al., ‘18] to learn neural network substructures. How-
ever, in these papers, the high-level structure of the network generally remains user defined.

Two
candidate ensembles

This illustration shows the algorithm’s incremental construction of a fully-connected neural network. The
input layer is indicated in blue, the output layer in green. Units in the yellow block are added at the
first iteration while units in purple are added at the second iteration. Two candidate extensions of the
architecture are considered at the third iteration (shown in red): (a) a two-layer extension; (b) a three-
layer extension. Here, a line between two blocks of units indicates that these blocks are fully-connected.

17

https://arxiv.org/abs/1707.07012
https://arxiv.org/abs/1802.01548
https://arxiv.org/abs/1806.09055

adanet Documentation, Release 0.8.0

7.2 Neural networks are ensembles

Ensembles of neural networks have shown remarkable performance in domains such as natural language processing,
image recognition, and many others. The two composing techniques are interesting in their own rights: ensemble
techniques have a rich history and theoretical understanding, while neural networks provide a general framework for
solving complex tasks across many domains at scale.

Coincidentally, an ensemble of neural networks whose outputs are linearly combined is also a neural network. With
that definition in mind, we seek to answer the question: Can we learn a neural network architecture as an ensemble of
subnetworks? And can we adaptively learn such an ensemble with fewer trainable parameters and that performs better
than any single neural network trained end-to-end?

7.3 Adaptive architecture search

Our algorithm for performing adaptive neural architecture search is AdaNet [Cortes et al., ICML ‘17], which iteratively
grows an ensemble of neural networks while providing learning guarantees. It is adaptive because at each iteration the
candidate subnetworks are generated and trained based on the current state of the neural network.

We show this algorithm can in fact learn a neural network (ensemble) that achieves state of the art results across several
datasets. We also show how this algorithm is complementary with the neural architecture search research mentioned
earlier, as it learns to combine these substructures in a principled manner to achieve these results.

7.4 The AdaNet algorithm

The AdaNet algorithm works as follows: a generator iteratively creates a set of candidate base learners to consider
including in the final ensemble. How these base learners are trained is left completely up to the user, but generally
they are trained to optimize some common loss function such as cross-entropy loss or mean squared error. At every
iteration, the trained base learners then evaluated on their ability to minimize the AdaNet objective F, and the best
one is included in the final ensemble.

$$\begin{aligned} &F\left (w \right) = \frac{1}{m} \sum_{i=0}^{N-1} \Phi \left (\sum_{j=0}^{N-1}w_jh_j(x_i),
y_i \right) + \sum_{j=0}^{N-1} \left (\lambda r(h_j) + \beta \right)\left | w_j \right |\ &\text{where }w_j \text{ is the
weight of model } j \text{‘s contribution to the ensemble,}\ &h_j \text{ is model } j,\ &\Phi \text{ is the loss function,}\
&r(h_j) \text{ is model } j\text{‘s complexity, and}\ &\lambda \text{ and } \beta \text{ are tunable hyperparameters.}
\end{aligned}$$

For every iteration after the first, the generator can generate neural networks based on the current state of the ensemble.
This allows AdaNet to create complex structures or use advanced techniques for training candidates so that they will
most significantly improve the ensemble. For an optimization example, knowledge distillation [Hinton et al., ‘15] is
a technique that uses a teacher network’s logits as the ground-truth when computing the loss of a trainable student
network, and is shown to produce students that perform better than a identical network trained without. At every
iteration, we can use the current ensemble as a teacher network and the candidates as students, to obtain base learners
that perform better, and significantly improve the performance of the final ensemble.

7.5 More information

• A step by step walkthrough of the AdaNet algorithm

18 Chapter 7. Algorithm

https://arxiv.org/abs/1607.01097
https://arxiv.org/abs/1503.02531
https://docs.google.com/presentation/d/19NL1nI-MpwysxDsjSNmHbzLnr4NGacw6a8YGo88VA2Y/present?slide=id.g3d1c8865a3_0_0

CHAPTER 8

Theory

8.1 Focus on generalization

Generalization error is what we really want to minimize when we train a model. Most algorithms minimize general-
ization error indirectly by minimizing a loss function that consists of a training loss term and additional penalty terms
to discourage the models away from acquiring properties that are associated with overfitting (e.g., L1 weight norms,
L2 weight norms).

8.2 Rigorous trade-offs between training loss and complexity

How do we know what model properties to avoid? Currently, these usually come from practical experience or industry-
accepted best practices. While this has worked well so far, we would like to minimize the generalization error in a
more principled way.

AdaNet’s approach is to minimize a theoretical upper bound on generalization error, proven in the DeepBoost paper
[Cortes et al. ‘14]:

$$R(f) \leq \widehat{R}{S, \rho}(f) + \frac{4}{\rho} \sum{k = 1}^{l} \big | \mathbf{w} _k \big |_1 \math-
frak{R}_m(\widetilde {\cal H}_k) + \widetilde O\Big(\frac{1}{\rho} \sqrt{\frac{\log l}{m}}\Big)$$

This generalization bound allows us to make an apples-to-apples comparison between the complexities of models in
an ensemble and the overall training loss – allowing us to design an algorithm that makes this trade-off in a rigorous
manner.

8.3 Other key insights

• Convex combinations can’t hurt. Given a set of already-performant and uncorrelated base learners, one can
take a linear combination of them with weights that sum to 1 to obtain an ensemble that outperforms the best
among those base learners. But even though this ensemble has more trainable parameters, it does not have a
greater tendency to overfit.

19

https://ai.google/research/pubs/pub42856

adanet Documentation, Release 0.8.0

• De-emphasize rather than discourage complex models. If one combines a few base learners that are each
selected from a different function class (e.g., neural networks of different depths and widths), one might expect
the tendency to overfit to be similar to that of an ensemble comprised of base learners selected from the union of
all the function classes. Remarkably, the DeepBoost bound shows that we can actually do better, as long as the
final ensemble is a weighted average of model logits where each base learner’s weight is inversely proportional
to the Rademacher complexity of its function class, and all the weights in the logits layer sum to 1. Additionally,
at training time, we don’t have to discourage the trainer from learning complex models – it is only when we
consider the how much the model should contribute to the ensemble do we take the complexity of the model
into account.

• Complexity is not just about the weights. The Rademacher complexity of a neural network does not simply
depend on the number of weights or the norm of its weights – it also depends on the number of layers and
how they are connected. An upper bound on the Rademacher complexity of neural networks can be expressed
recursively [Cortes et al. ‘17], and applies to both fully-connected and convolutional neural networks, thus
allowing us to compute the complexity upper-bounds of almost any neural network that can be expressed as a
directed-acyclic graph of layers, including unconventional architectures such as those found by NASNet [Zoph et
al. ‘17]. Rademacher complexity is also data-dependent, which means that the same neural network architecture
can have different generalization behavior on different data sets.

8.4 AdaNet loss function

Using these insights, AdaNet seeks to minimize the generalization error more directly using this loss function:

$$\begin{align*} &F\left (w \right) = \frac{1}{m} \sum_{i=1}^{m} \Phi \left (\sum_{j=1}^{N}w_jh_j(x_i), y_i
\right) + \sum_{j=1}^{N} \left (\lambda r(h_j) + \beta \right)\left | w_j \right |\ &\text{where }w_j \text{ is the
weight of model } j \text{‘s contribution to the ensemble,}\ &h_j \text{ is model } j,\ &\Phi \text{ is the loss function,}\
&r(h_j) \text{ is model } j\text{‘s complexity, and}\ &\lambda \text{ and } \beta \text{ are tunable hyperparameters.}
\end{align*}$$

By minimizing this loss function, AdaNet is able to combine base learners of different complexities in a way that
generalizes better than one might expect from the total size of the base learners.

20 Chapter 8. Theory

https://arxiv.org/abs/1607.01097
https://arxiv.org/abs/1707.07012
https://arxiv.org/abs/1707.07012

CHAPTER 9

adanet

AdaNet: Fast and flexible AutoML with learning guarantees.

9.1 Estimators

High-level APIs for training, evaluating, predicting, and serving AdaNet model.

9.1.1 AutoEnsembleEstimator

class adanet.AutoEnsembleEstimator(head, candidate_pool, max_iteration_steps, en-
semblers=None, ensemble_strategies=None, log-
its_fn=None, last_layer_fn=None, evaluator=None, met-
ric_fn=None, force_grow=False, adanet_loss_decay=0.9,
worker_wait_timeout_secs=7200,
model_dir=None, config=None, de-
bug=False, enable_ensemble_summaries=True,
enable_subnetwork_summaries=True,
global_step_combiner_fn=<function reduce_mean_v1>,
max_iterations=None, replay_config=None, **kwargs)

Bases: adanet.core.estimator.Estimator

A tf.estimator.Estimator that learns to ensemble models.

Specifically, it learns to ensemble models from a candidate pool using the Adanet algorithm.

A simple example of learning to ensemble linear and neural network
models.

import adanet
import tensorflow as tf

feature_columns = ...

(continues on next page)

21

adanet Documentation, Release 0.8.0

(continued from previous page)

head = MultiClassHead(n_classes=10)

Learn to ensemble linear and DNN models.
estimator = adanet.AutoEnsembleEstimator(

head=head,
candidate_pool=lambda config: {

"linear":
tf.estimator.LinearEstimator(

head=head,
feature_columns=feature_columns,
config=config,
optimizer=...),

"dnn":
tf.estimator.DNNEstimator(

head=head,
feature_columns=feature_columns,
config=config,
optimizer=...,
hidden_units=[1000, 500, 100])},

max_iteration_steps=50)

Input builders
def input_fn_train:
Returns tf.data.Dataset of (x, y) tuple where y represents label's
class index.
pass

def input_fn_eval:
Returns tf.data.Dataset of (x, y) tuple where y represents label's
class index.
pass

def input_fn_predict:
Returns tf.data.Dataset of (x, None) tuple.
pass

estimator.train(input_fn=input_fn_train, steps=100)
metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10)
predictions = estimator.predict(input_fn=input_fn_predict)

Or to train candidate subestimators on different training data subsets:

train_data_files = [...]

Learn to ensemble linear and DNN models.
estimator = adanet.AutoEnsembleEstimator(

head=head,
candidate_pool=lambda config: {

"linear":
adanet.AutoEnsembleSubestimator(

tf.estimator.LinearEstimator(
head=head,
feature_columns=feature_columns,
config=config,
optimizer=...),

make_train_input_fn(train_data_files[:-1])),
"dnn":

adanet.AutoEnsembleSubestimator(
tf.estimator.DNNEstimator(

(continues on next page)

22 Chapter 9. adanet

adanet Documentation, Release 0.8.0

(continued from previous page)

head=head,
feature_columns=feature_columns,
config=config,
optimizer=...,
hidden_units=[1000, 500, 100]),

make_train_input_fn(train_data_files[0:]))},
max_iteration_steps=50)

estimator.train(input_fn=make_train_input_fn(train_data_files), steps=100)

Parameters

• head – A tf.contrib.estimator.Head instance for computing loss and evaluation
metrics for every candidate.

• candidate_pool – List of tf.estimator.Estimator and
AutoEnsembleSubestimator objects, or dict of string name to tf.estimator.
Estimator and AutoEnsembleSubestimator objects that are candidate subesti-
mators to ensemble at each iteration. The order does not directly affect which candidates
will be included in the final ensemble, but will affect the name of the candidate. When
using a dict, the string key becomes the candidate subestimator’s name. Alternatively, this
argument can be a function that takes a config argument and returns the aforementioned
values in case the objects need to be re-instantiated at each adanet iteration.

• max_iteration_steps – Total number of steps for which to train candidates per
iteration. If OutOfRange or StopIteration occurs in the middle, training stops before
max_iteration_steps steps.

• logits_fn – A function for fetching the subnetwork logits from a tf.estimator.
EstimatorSpec, which should obey the following signature:

– Args: Can only have following argument: - estimator_spec: The candidate’s tf.
estimator.EstimatorSpec.

– Returns: Logits tf.Tensor or dict of string to logits tf.Tensor (for multi-head)
for the candidate subnetwork extracted from the given estimator_spec. When None, it
will default to returning estimator_spec.predictions when they are a tf.Tensor or the
tf.Tensor for the key ‘logits’ when they are a dict of string to tf.Tensor.

• last_layer_fn – An optional function for fetching the subnetwork last_layer from a
tf.estimator.EstimatorSpec, which should obey the following signature:

– Args: Can only have following argument: - estimator_spec: The candidate’s tf.
estimator.EstimatorSpec.

– Returns: Last layer tf.Tensor or dict of string to last layer tf.Tensor (for multi-
head) for the candidate subnetwork extracted from the given estimator_spec. The
last_layer can be used for learning ensembles or exporting them as embeddings.

When None, it will default to using the logits as the last_layer.

• ensemblers – See adanet.Estimator.

• ensemble_strategies – See adanet.Estimator.

• evaluator – See adanet.Estimator.

• metric_fn – See adanet.Estimator.

• force_grow – See adanet.Estimator.

9.1. Estimators 23

adanet Documentation, Release 0.8.0

• adanet_loss_decay – See adanet.Estimator.

• worker_wait_timeout_secs – See adanet.Estimator.

• model_dir – See adanet.Estimator.

• config – See adanet.Estimator.

• debug – See adanet.Estimator.

• enable_ensemble_summaries – See adanet.Estimator.

• enable_subnetwork_summaries – See adanet.Estimator.

• global_step_combiner_fn – See adanet.Estimator.

• max_iterations – See adanet.Estimator.

• replay_config – See adanet.Estimator.

• **kwargs – Extra keyword args passed to the parent.

Returns An adanet.AutoEnsembleEstimator instance.

Raises ValueError – If any of the candidates in candidate_pool are not tf.estimator.
Estimator instances.

eval_dir(name=None)
Shows the directory name where evaluation metrics are dumped.

Parameters name – Name of the evaluation if user needs to run multiple evaluations on different
data sets, such as on training data vs test data. Metrics for different evaluations are saved in
separate folders, and appear separately in tensorboard.

Returns A string which is the path of directory contains evaluation metrics.

evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)
Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data. Evaluates until: - steps batches are processed,
or - input_fn raises an end-of-input exception (tf.errors.OutOfRangeError or StopIteration).

Parameters

• input_fn – A function that constructs the input data for evaluation. See [Premade
Estimators](https://tensorflow.org/guide/premade_estimators#create_input_functions) for
more information. The function should construct and return one of the following: * A
tf.data.Dataset object: Outputs of Dataset object must be a tuple (features, labels) with
same constraints as below. * A tuple (features, labels): Where features is a tf.Tensor or a
dictionary of string feature name to Tensor and labels is a Tensor or a dictionary of string
label name to Tensor. Both features and labels are consumed by model_fn. They should
satisfy the expectation of model_fn from inputs.

• steps – Number of steps for which to evaluate model. If None, evaluates until input_fn
raises an end-of-input exception.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the evaluation call.

• checkpoint_path – Path of a specific checkpoint to evaluate. If None, the latest
checkpoint in model_dir is used. If there are no checkpoints in model_dir, evaluation is
run with newly initialized Variables instead of ones restored from checkpoint.

24 Chapter 9. adanet

https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release 0.8.0

• name – Name of the evaluation if user needs to run multiple evaluations on different data
sets, such as on training data vs test data. Metrics for different evaluations are saved in
separate folders, and appear separately in tensorboard.

Returns A dict containing the evaluation metrics specified in model_fn keyed by name, as well
as an entry global_step which contains the value of the global step for which this evaluation
was performed. For canned estimators, the dict contains the loss (mean loss per mini-batch)
and the average_loss (mean loss per sample). Canned classifiers also return the accuracy.
Canned regressors also return the label/mean and the prediction/mean.

Raises ValueError – If steps <= 0.

experimental_export_all_saved_models(export_dir_base, input_receiver_fn_map,
assets_extra=None, as_text=False, check-
point_path=None)

Exports a SavedModel with tf.MetaGraphDefs for each requested mode.

For each mode passed in via the input_receiver_fn_map, this method builds a new graph by call-
ing the input_receiver_fn to obtain feature and label Tensor‘s. Next, this method calls the ‘Es-
timator’s model_fn in the passed mode to generate the model graph based on those features and
labels, and restores the given checkpoint (or, lacking that, the most recent checkpoint) into the
graph. Only one of the modes is used for saving variables to the SavedModel (order of preference:
tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL, then tf.estimator.ModeKeys.PREDICT), such
that up to three tf.MetaGraphDefs are saved with a single set of variables in a single SavedModel directory.

For the variables and tf.MetaGraphDefs, a timestamped export directory below export_dir_base, and writes
a SavedModel into it containing the tf.MetaGraphDef for the given mode and its associated signatures.

For prediction, the exported MetaGraphDef will provide one SignatureDef for each element of the
export_outputs dict returned from the model_fn, named using the same keys. One of these keys
is always tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating
which signature will be served when a serving request does not specify one. For each signature, the outputs
are provided by the corresponding tf.estimator.export.ExportOutput‘s, and the inputs are always the input
receivers provided by the ‘serving_input_receiver_fn.

For training and evaluation, the train_op is stored in an extra collection, and loss, metrics, and predictions
are included in a SignatureDef for the mode in question.

Extra assets may be written into the SavedModel via the assets_extra argument. This should be a dict,
where each key gives a destination path (including the filename) relative to the assets.extra directory. The
corresponding value gives the full path of the source file to be copied. For example, the simple case of
copying a single file without renaming it is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

Parameters

• export_dir_base – A string containing a directory in which to create timestamped
subdirectories containing exported ‘SavedModel‘s.

• input_receiver_fn_map – dict of tf.estimator.ModeKeys to input_receiver_fn map-
pings, where the input_receiver_fn is a function that takes no arguments and returns the
appropriate subclass of InputReceiver.

• assets_extra – A dict specifying how to populate the assets.extra directory within the
exported SavedModel, or None if no extra assets are needed.

• as_text – whether to write the SavedModel proto in text format.

• checkpoint_path – The checkpoint path to export. If None (the default), the most
recent checkpoint found within the model directory is chosen.

Returns The string path to the exported directory.

9.1. Estimators 25

adanet Documentation, Release 0.8.0

Raises ValueError – if any input_receiver_fn is None, no export_outputs are provided, or no
checkpoint can be found.

export_saved_model(export_dir_base, serving_input_receiver_fn, assets_extra=None,
as_text=False, checkpoint_path=None, experimental_mode=’infer’)

Exports inference graph as a SavedModel into the given dir.

For a detailed guide, see [Using SavedModel with Estimators](https://tensorflow.org/guide/saved_model#
using_savedmodel_with_estimators).

This method builds a new graph by first calling the serving_input_receiver_fn to obtain feature Tensor‘s,
and then calling this ‘Estimator’s model_fn to generate the model graph based on those features. It restores
the given checkpoint (or, lacking that, the most recent checkpoint) into this graph in a fresh session. Finally
it creates a timestamped export directory below the given export_dir_base, and writes a SavedModel into
it containing a single tf.MetaGraphDef saved from this session.

The exported MetaGraphDef will provide one SignatureDef for each element of the ex-
port_outputs dict returned from the model_fn, named using the same keys. One of these keys
is always tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating
which signature will be served when a serving request does not specify one. For each signature, the outputs
are provided by the corresponding tf.estimator.export.ExportOutput‘s, and the inputs are always the input
receivers provided by the ‘serving_input_receiver_fn.

Extra assets may be written into the SavedModel via the assets_extra argument. This should be a dict,
where each key gives a destination path (including the filename) relative to the assets.extra directory. The
corresponding value gives the full path of the source file to be copied. For example, the simple case of
copying a single file without renaming it is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

The experimental_mode parameter can be used to export a single train/eval/predict graph as a SavedModel.
See experimental_export_all_saved_models for full docs.

Parameters

• export_dir_base – A string containing a directory in which to create timestamped
subdirectories containing exported ‘SavedModel‘s.

• serving_input_receiver_fn – A function that takes no ar-
gument and returns a tf.estimator.export.ServingInputReceiver or
tf.estimator.export.TensorServingInputReceiver.

• assets_extra – A dict specifying how to populate the assets.extra directory within the
exported SavedModel, or None if no extra assets are needed.

• as_text – whether to write the SavedModel proto in text format.

• checkpoint_path – The checkpoint path to export. If None (the default), the most
recent checkpoint found within the model directory is chosen.

• experimental_mode – tf.estimator.ModeKeys value indicating with mode will be ex-
ported. Note that this feature is experimental.

Returns The string path to the exported directory.

Raises

• ValueError – if no serving_input_receiver_fn is provided, no

• export_outputs are provided, or no checkpoint can be found.

export_savedmodel(export_dir_base, serving_input_receiver_fn, assets_extra=None,
as_text=False, checkpoint_path=None, strip_default_attrs=False)

DEPRECATED FUNCTION

26 Chapter 9. adanet

https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators
https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators

adanet Documentation, Release 0.8.0

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for
updating: This function has been renamed, use export_saved_model instead.

get_variable_names()
Returns list of all variable names in this model.

Returns List of names.

Raises ValueError – If the Estimator has not produced a checkpoint yet.

get_variable_value(name)
Returns value of the variable given by name.

Parameters name – string or a list of string, name of the tensor.

Returns Numpy array - value of the tensor.

Raises ValueError – If the Estimator has not produced a checkpoint yet.

latest_checkpoint()
Finds the filename of the latest saved checkpoint file in model_dir.

Returns The full path to the latest checkpoint or None if no checkpoint was found.

model_fn
Returns the model_fn which is bound to self.params.

Returns def model_fn(features, labels, mode, config)

Return type The model_fn with following signature

predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None,
yield_single_examples=True)

Yields predictions for given features.

Please note that interleaving two predict outputs does not work. See: [issue/20506](https://github.com/
tensorflow/tensorflow/issues/20506#issuecomment-422208517)

Parameters

• input_fn – A function that constructs the features. Prediction continues un-
til input_fn raises an end-of-input exception (tf.errors.OutOfRangeError or StopIter-
ation). See [Premade Estimators](https://tensorflow.org/guide/premade_estimators#
create_input_functions) for more information. The function should construct and return
one of the following:

– A tf.data.Dataset object: Outputs of Dataset object must have same constraints as be-
low.

– features: A tf.Tensor or a dictionary of string feature name to Tensor. features are
consumed by model_fn. They should satisfy the expectation of model_fn from inputs.

– A tuple, in which case the first item is extracted as features.

• predict_keys – list of str, name of the keys to predict. It is used if the
tf.estimator.EstimatorSpec.predictions is a dict. If predict_keys is used then rest of the
predictions will be filtered from the dictionary. If None, returns all.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the prediction call.

• checkpoint_path – Path of a specific checkpoint to predict. If None, the latest check-
point in model_dir is used. If there are no checkpoints in model_dir, prediction is run with
newly initialized Variables instead of ones restored from checkpoint.

9.1. Estimators 27

https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517
https://tensorflow.org/guide/premade_estimators#create_input_functions
https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release 0.8.0

• yield_single_examples – If False, yields the whole batch as returned by the
model_fn instead of decomposing the batch into individual elements. This is useful if
model_fn returns some tensors whose first dimension is not equal to the batch size.

Yields Evaluated values of predictions tensors.

Raises

• ValueError – If batch length of predictions is not the same and yield_single_examples
is True.

• ValueError – If there is a conflict between predict_keys and predictions. For example
if predict_keys is not None but tf.estimator.EstimatorSpec.predictions is not a dict.

train(input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)
Trains a model given training data input_fn.

NOTE: If a given input_fn raises an OutOfRangeError, then all of training will exit. The best practice
is to make the training dataset repeat forever, in order to perform model search for more than one iteration.

Parameters

• input_fn – A function that provides input data for training as minibatches. See
[Premade Estimators](https://tensorflow.org/guide/premade_estimators#create_input_
functions) for more information. The function should construct and return one of the
following:

– A tf.data.Dataset object: Outputs of Dataset object must be a tuple (features,
labels) with same constraints as below.

– A tuple (features, labels): Where features is a tf.Tensor or a dictionary of string
feature name to Tensor and labels is a Tensor or a dictionary of string label name to
Tensor. Both features and labels are consumed by model_fn. They should satisfy the
expectation of model_fn from inputs.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks
inside the training loop.

• steps – Number of steps for which to train the model. If None, train forever or train
until input_fn generates the tf.errors.OutOfRange error or StopIteration ex-
ception. steps works incrementally. If you call two times train(steps=10) then training
occurs in total 20 steps. If OutOfRange or StopIteration occurs in the middle,
training stops before 20 steps. If you don’t want to have incremental behavior please set
max_steps instead. If set, max_steps must be None.

• max_steps – Number of total steps for which to train model. If None, train
forever or train until input_fn generates the tf.errors.OutOfRange error or
StopIteration exception. If set, steps must be None. If OutOfRange or
StopIteration occurs in the middle, training stops before max_steps steps. Two
calls to train(steps=100) means 200 training iterations. On the other hand, two calls to
train(max_steps=100) means that the second call will not do any iteration since first call
did all 100 steps.

• saving_listeners – list of CheckpointSaverListener objects. Used for call-
backs that run immediately before or after checkpoint savings.

Returns self, for chaining.

Raises

• ValueError – If both steps and max_steps are not None.

• ValueError – If either steps or max_steps <= 0.

28 Chapter 9. adanet

https://tensorflow.org/guide/premade_estimators#create_input_functions
https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release 0.8.0

9.1.2 AutoEnsembleSubestimator

class adanet.AutoEnsembleSubestimator
Bases: adanet.autoensemble.estimator.AutoEnsembleSubestimator

A subestimator to train and consider for ensembling.

Parameters

• estimator – A tf.estimator.Estimator instance to consider for ensembling.

• train_input_fn – A function that provides input data for training as minibatches. It can
be used to implement ensemble methods like bootstrap aggregating (a.k.a bagging) where
each subnetwork trains on different slices of the training data. The function should construct
and return one of the following:

– A tf.data.Dataset object: Outputs of Dataset object must be a tuple (features, labels) with
same constraints as below. NOTE: A Dataset must return at least two batches before
hitting the end-of-input, otherwise all of training terminates. TODO: Figure out how to
handle single-batch datasets.

– A tuple (features, labels): Where features is a tf.Tensor or a dictionary of string feature
name to Tensor and labels is a Tensor or a dictionary of string label name to Tensor.
Both features and labels are consumed by estimator#model_fn. They should satisfy the
expectation of estimator#model_fn from inputs.

Returns An AutoEnsembleSubestimator instance to be auto-ensembled.

count()
Return number of occurrences of value.

estimator
Alias for field number 0

index()
Return first index of value.

Raises ValueError if the value is not present.

train_input_fn
Alias for field number 1

9.1.3 Estimator

class adanet.Estimator(head, subnetwork_generator, max_iteration_steps, ensem-
blers=None, ensemble_strategies=None, evaluator=None, re-
port_materializer=None, metric_fn=None, force_grow=False,
replicate_ensemble_in_training=False, adanet_loss_decay=0.9,
delay_secs_per_worker=5, max_worker_delay_secs=60,
worker_wait_secs=5, worker_wait_timeout_secs=7200,
model_dir=None, report_dir=None, config=None, debug=False, en-
able_ensemble_summaries=True, enable_subnetwork_summaries=True,
global_step_combiner_fn=<function reduce_mean_v1>,
max_iterations=None, export_subnetwork_logits=False, ex-
port_subnetwork_last_layer=True, replay_config=None, **kwargs)

Bases: tensorflow_estimator.python.estimator.estimator.Estimator

A tf.estimator.Estimator for training, evaluation, and serving.

9.1. Estimators 29

adanet Documentation, Release 0.8.0

This implementation uses an adanet.subnetwork.Generator as its weak learning algorithm for gener-
ating candidate subnetworks. These are trained in parallel using a single graph per iteration. At the end of each
iteration, the estimator saves the sub-graph of the best subnetwork ensemble and its weights as a separate check-
point. At the beginning of the next iteration, the estimator imports the previous iteration’s frozen graph and adds
ops for the next candidates as part of a new graph and session. This allows the estimator have the performance
of Tensorflow’s static graph constraint (minus the performance hit of reconstructing a graph between iterations),
while having the flexibility of having a dynamic graph.

NOTE: Subclassing tf.estimator.Estimator is only necessary to work with tf.estimator.
train_and_evaluate() which asserts that the estimator argument is a tf.estimator.Estimator
subclass. However, all training is delegated to a separate tf.estimator.Estimator instance. It is respon-
sible for supporting both local and distributed training. As such, the adanet.Estimator is only responsible
for bookkeeping across iterations.

Parameters

• head – A tf.contrib.estimator.Head instance for computing loss and evaluation
metrics for every candidate.

• subnetwork_generator – The adanet.subnetwork.Generator which de-
fines the candidate subnetworks to train and evaluate at every AdaNet iteration.

• max_iteration_steps – Total number of steps for which to train candidates per iter-
ation. If OutOfRange or StopIteration occurs in the middle, training stops before
max_iteration_steps steps. When None, it will train the current iteration forever.

• ensemblers – An iterable of adanet.ensemble.Ensembler objects that define
how to ensemble a group of subnetworks. If there are multiple, each should have a different
name property.

• ensemble_strategies – An iterable of adanet.ensemble.Strategy objects
that define the candidate ensembles of subnetworks to explore at each iteration.

• evaluator – An adanet.Evaluator for candidate selection after all subnetworks are
done training. When None, candidate selection uses a moving average of their adanet.
Ensemble AdaNet loss during training instead. In order to use the AdaNet algorithm as
described in [Cortes et al., ‘17], the given adanet.Evaluator must be created with
the same dataset partition used during training. Otherwise, this framework will perform
AdaNet.HoldOut which uses a holdout set for candidate selection, but does not benefit from
learning guarantees.

• report_materializer – An adanet.ReportMaterializer. Its reports are
made available to the subnetwork_generator at the next iteration, so that it can adapt
its search space. When None, the subnetwork_generator generate_candidates()
method will receive empty Lists for their previous_ensemble_reports and all_reports argu-
ments.

• metric_fn – A function for adding custom evaluation metrics, which should obey the
following signature:

– Args: Can only have the following three arguments in any order: - predictions:
Predictions Tensor or dict of Tensor

created by given head.

* features: Input dict of Tensor objects created by input_fn which is given to
estimator.evaluate() as an argument.

* labels: Labels Tensor or dict of Tensor (for multi-head) created by input_fn
which is given to estimator.evaluate() as an argument.

30 Chapter 9. adanet

adanet Documentation, Release 0.8.0

– Returns: Dict of metric results keyed by name. Final metrics are a union of this and
head’s existing metrics. If there is a name conflict between this and head`s
existing metrics, this will override the existing one.
The values of the dict are the results of calling a metric
function, namely a :code:`(metric_tensor, update_op) tuple.

• force_grow – Boolean override that forces the ensemble to grow by one subnetwork
at the end of each iteration. Normally at the end of each iteration, AdaNet selects the
best candidate ensemble according to its performance on the AdaNet objective. In some
cases, the best ensemble is the previous_ensemble as opposed to one that includes a newly
trained subnetwork. When True, the algorithm will not select the previous_ensemble as the
best candidate, and will ensure that after n iterations the final ensemble is composed of n
subnetworks.

• replicate_ensemble_in_training – Whether to rebuild the frozen subnetworks
of the ensemble in training mode, which can change the outputs of the frozen subnetworks
in the ensemble. When False and during candidate training, the frozen subnetworks in
the ensemble are in prediction mode, so training-only ops like dropout are not applied to
them. When True and training the candidates, the frozen subnetworks will be in training
mode as well, so they will apply training-only ops like dropout. This argument is useful for
regularizing learning mixture weights, or for making training-only side inputs available in
subsequent iterations. For most use-cases, this should be False.

• adanet_loss_decay – Float decay for the exponential-moving-average of the AdaNet
objective throughout training. This moving average is a data- driven way tracking the best
candidate with only the training set.

• delay_secs_per_worker – Float number of seconds to delay starting the i-th worker.
Staggering worker start-up during distributed asynchronous SGD can improve training sta-
bility and speed up convergence. Each worker will wait (i+1) * delay_secs_per_worker
seconds before beginning training.

• max_worker_delay_secs – Float max number of seconds to delay starting the i-
th worker. Staggering worker start-up during distributed asynchronous SGD can im-
prove training stability and speed up convergence. Each worker will wait up to
max_worker_delay_secs before beginning training.

• worker_wait_secs – Float number of seconds for workers to wait before checking if
the chief prepared the next iteration.

• worker_wait_timeout_secs – Float number of seconds for workers to wait for chief
to prepare the next iteration during distributed training. This is needed to prevent workers
waiting indefinitely for a chief that may have crashed or been turned down. When the
timeout is exceeded, the worker exits the train loop. In situations where the chief job is
much slower than the worker jobs, this timeout should be increased.

• model_dir – Directory to save model parameters, graph and etc. This can also be used to
load checkpoints from the directory into a estimator to continue training a previously saved
model.

• report_dir – Directory where the adanet.subnetwork.
MaterializedReport`s materialized by :code:`report_materializer
would be saved. If report_materializer is None, this will not save anything. If
None or empty string, defaults to <model_dir>/report.

• config – RunConfig object to configure the runtime settings.

• debug – Boolean to enable debug mode which will check features and labels for Infs and
NaNs.

9.1. Estimators 31

adanet Documentation, Release 0.8.0

• enable_ensemble_summaries – Whether to record summaries to display in Tensor-
Board for each ensemble candidate. Disable to reduce memory and disk usage per run.

• enable_subnetwork_summaries – Whether to record summaries to display in Ten-
sorBoard for each subnetwork. Disable to reduce memory and disk usage per run.

• global_step_combiner_fn – Function for combining each subnetwork’s iteration
step into the global step. By default it is the average of all subnetwork iteration steps,
which may affect the global_steps/sec as subnetworks early stop and no longer increase
their iteration step.

• max_iterations – Integer maximum number of AdaNet iterations (a.k.a. rounds) of
generating new subnetworks and ensembles, training them, and evaluating them against
the current best ensemble. When None, AdaNet will keep iterating until Estimator#train
terminates. Otherwise, if max_iteratios is supplied and is met or exceeded during
training, training will terminate even before steps or max_steps.

• export_subnetwork_logits – Whether to include subnetwork logits in exports.

• export_subnetwork_last_layer – Whether to include subnetwork last layer in ex-
ports.

• replay_config – Optional adanet.replay.Config to specify a previous AdaNet
run to replay. Given the exact same search space but potentially different training data,
the replay_config causes the estimator to reconstruct the previously trained model without
performing a search. NOTE: The previous run must have executed with identical hyperpa-
rameters as the new run in order to be replayable. The only supported difference is that the
underlying data can change.

• **kwargs – Extra keyword args passed to the parent.

Returns An adanet.Estimator instance.

Raises

• ValueError – If subnetwork_generator is None.

• ValueError – If max_iteration_steps is <= 0.

• ValueError – If model_dir is not specified during distributed training.

• ValueError – If max_iterations is <= 0.

eval_dir(name=None)
Shows the directory name where evaluation metrics are dumped.

Parameters name – Name of the evaluation if user needs to run multiple evaluations on different
data sets, such as on training data vs test data. Metrics for different evaluations are saved in
separate folders, and appear separately in tensorboard.

Returns A string which is the path of directory contains evaluation metrics.

evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)
Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data. Evaluates until: - steps batches are processed,
or - input_fn raises an end-of-input exception (tf.errors.OutOfRangeError or StopIteration).

Parameters

• input_fn – A function that constructs the input data for evaluation. See [Premade
Estimators](https://tensorflow.org/guide/premade_estimators#create_input_functions) for
more information. The function should construct and return one of the following: * A
tf.data.Dataset object: Outputs of Dataset object must be a tuple (features, labels) with

32 Chapter 9. adanet

https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release 0.8.0

same constraints as below. * A tuple (features, labels): Where features is a tf.Tensor or a
dictionary of string feature name to Tensor and labels is a Tensor or a dictionary of string
label name to Tensor. Both features and labels are consumed by model_fn. They should
satisfy the expectation of model_fn from inputs.

• steps – Number of steps for which to evaluate model. If None, evaluates until input_fn
raises an end-of-input exception.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the evaluation call.

• checkpoint_path – Path of a specific checkpoint to evaluate. If None, the latest
checkpoint in model_dir is used. If there are no checkpoints in model_dir, evaluation is
run with newly initialized Variables instead of ones restored from checkpoint.

• name – Name of the evaluation if user needs to run multiple evaluations on different data
sets, such as on training data vs test data. Metrics for different evaluations are saved in
separate folders, and appear separately in tensorboard.

Returns A dict containing the evaluation metrics specified in model_fn keyed by name, as well
as an entry global_step which contains the value of the global step for which this evaluation
was performed. For canned estimators, the dict contains the loss (mean loss per mini-batch)
and the average_loss (mean loss per sample). Canned classifiers also return the accuracy.
Canned regressors also return the label/mean and the prediction/mean.

Raises ValueError – If steps <= 0.

experimental_export_all_saved_models(export_dir_base, input_receiver_fn_map,
assets_extra=None, as_text=False, check-
point_path=None)

Exports a SavedModel with tf.MetaGraphDefs for each requested mode.

For each mode passed in via the input_receiver_fn_map, this method builds a new graph by call-
ing the input_receiver_fn to obtain feature and label Tensor‘s. Next, this method calls the ‘Es-
timator’s model_fn in the passed mode to generate the model graph based on those features and
labels, and restores the given checkpoint (or, lacking that, the most recent checkpoint) into the
graph. Only one of the modes is used for saving variables to the SavedModel (order of preference:
tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL, then tf.estimator.ModeKeys.PREDICT), such
that up to three tf.MetaGraphDefs are saved with a single set of variables in a single SavedModel directory.

For the variables and tf.MetaGraphDefs, a timestamped export directory below export_dir_base, and writes
a SavedModel into it containing the tf.MetaGraphDef for the given mode and its associated signatures.

For prediction, the exported MetaGraphDef will provide one SignatureDef for each element of the
export_outputs dict returned from the model_fn, named using the same keys. One of these keys
is always tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating
which signature will be served when a serving request does not specify one. For each signature, the outputs
are provided by the corresponding tf.estimator.export.ExportOutput‘s, and the inputs are always the input
receivers provided by the ‘serving_input_receiver_fn.

For training and evaluation, the train_op is stored in an extra collection, and loss, metrics, and predictions
are included in a SignatureDef for the mode in question.

Extra assets may be written into the SavedModel via the assets_extra argument. This should be a dict,
where each key gives a destination path (including the filename) relative to the assets.extra directory. The
corresponding value gives the full path of the source file to be copied. For example, the simple case of
copying a single file without renaming it is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

Parameters

9.1. Estimators 33

adanet Documentation, Release 0.8.0

• export_dir_base – A string containing a directory in which to create timestamped
subdirectories containing exported ‘SavedModel‘s.

• input_receiver_fn_map – dict of tf.estimator.ModeKeys to input_receiver_fn map-
pings, where the input_receiver_fn is a function that takes no arguments and returns the
appropriate subclass of InputReceiver.

• assets_extra – A dict specifying how to populate the assets.extra directory within the
exported SavedModel, or None if no extra assets are needed.

• as_text – whether to write the SavedModel proto in text format.

• checkpoint_path – The checkpoint path to export. If None (the default), the most
recent checkpoint found within the model directory is chosen.

Returns The string path to the exported directory.

Raises ValueError – if any input_receiver_fn is None, no export_outputs are provided, or no
checkpoint can be found.

export_saved_model(export_dir_base, serving_input_receiver_fn, assets_extra=None,
as_text=False, checkpoint_path=None, experimental_mode=’infer’)

Exports inference graph as a SavedModel into the given dir.

For a detailed guide, see [Using SavedModel with Estimators](https://tensorflow.org/guide/saved_model#
using_savedmodel_with_estimators).

This method builds a new graph by first calling the serving_input_receiver_fn to obtain feature Tensor‘s,
and then calling this ‘Estimator’s model_fn to generate the model graph based on those features. It restores
the given checkpoint (or, lacking that, the most recent checkpoint) into this graph in a fresh session. Finally
it creates a timestamped export directory below the given export_dir_base, and writes a SavedModel into
it containing a single tf.MetaGraphDef saved from this session.

The exported MetaGraphDef will provide one SignatureDef for each element of the ex-
port_outputs dict returned from the model_fn, named using the same keys. One of these keys
is always tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating
which signature will be served when a serving request does not specify one. For each signature, the outputs
are provided by the corresponding tf.estimator.export.ExportOutput‘s, and the inputs are always the input
receivers provided by the ‘serving_input_receiver_fn.

Extra assets may be written into the SavedModel via the assets_extra argument. This should be a dict,
where each key gives a destination path (including the filename) relative to the assets.extra directory. The
corresponding value gives the full path of the source file to be copied. For example, the simple case of
copying a single file without renaming it is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

The experimental_mode parameter can be used to export a single train/eval/predict graph as a SavedModel.
See experimental_export_all_saved_models for full docs.

Parameters

• export_dir_base – A string containing a directory in which to create timestamped
subdirectories containing exported ‘SavedModel‘s.

• serving_input_receiver_fn – A function that takes no ar-
gument and returns a tf.estimator.export.ServingInputReceiver or
tf.estimator.export.TensorServingInputReceiver.

• assets_extra – A dict specifying how to populate the assets.extra directory within the
exported SavedModel, or None if no extra assets are needed.

• as_text – whether to write the SavedModel proto in text format.

34 Chapter 9. adanet

https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators
https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators

adanet Documentation, Release 0.8.0

• checkpoint_path – The checkpoint path to export. If None (the default), the most
recent checkpoint found within the model directory is chosen.

• experimental_mode – tf.estimator.ModeKeys value indicating with mode will be ex-
ported. Note that this feature is experimental.

Returns The string path to the exported directory.

Raises

• ValueError – if no serving_input_receiver_fn is provided, no

• export_outputs are provided, or no checkpoint can be found.

export_savedmodel(export_dir_base, serving_input_receiver_fn, assets_extra=None,
as_text=False, checkpoint_path=None, strip_default_attrs=False)

DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for
updating: This function has been renamed, use export_saved_model instead.

get_variable_names()
Returns list of all variable names in this model.

Returns List of names.

Raises ValueError – If the Estimator has not produced a checkpoint yet.

get_variable_value(name)
Returns value of the variable given by name.

Parameters name – string or a list of string, name of the tensor.

Returns Numpy array - value of the tensor.

Raises ValueError – If the Estimator has not produced a checkpoint yet.

latest_checkpoint()
Finds the filename of the latest saved checkpoint file in model_dir.

Returns The full path to the latest checkpoint or None if no checkpoint was found.

model_fn
Returns the model_fn which is bound to self.params.

Returns def model_fn(features, labels, mode, config)

Return type The model_fn with following signature

predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None,
yield_single_examples=True)

Yields predictions for given features.

Please note that interleaving two predict outputs does not work. See: [issue/20506](https://github.com/
tensorflow/tensorflow/issues/20506#issuecomment-422208517)

Parameters

• input_fn – A function that constructs the features. Prediction continues un-
til input_fn raises an end-of-input exception (tf.errors.OutOfRangeError or StopIter-
ation). See [Premade Estimators](https://tensorflow.org/guide/premade_estimators#
create_input_functions) for more information. The function should construct and return
one of the following:

– A tf.data.Dataset object: Outputs of Dataset object must have same constraints as be-
low.

9.1. Estimators 35

https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517
https://tensorflow.org/guide/premade_estimators#create_input_functions
https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release 0.8.0

– features: A tf.Tensor or a dictionary of string feature name to Tensor. features are
consumed by model_fn. They should satisfy the expectation of model_fn from inputs.

– A tuple, in which case the first item is extracted as features.

• predict_keys – list of str, name of the keys to predict. It is used if the
tf.estimator.EstimatorSpec.predictions is a dict. If predict_keys is used then rest of the
predictions will be filtered from the dictionary. If None, returns all.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the prediction call.

• checkpoint_path – Path of a specific checkpoint to predict. If None, the latest check-
point in model_dir is used. If there are no checkpoints in model_dir, prediction is run with
newly initialized Variables instead of ones restored from checkpoint.

• yield_single_examples – If False, yields the whole batch as returned by the
model_fn instead of decomposing the batch into individual elements. This is useful if
model_fn returns some tensors whose first dimension is not equal to the batch size.

Yields Evaluated values of predictions tensors.

Raises

• ValueError – If batch length of predictions is not the same and yield_single_examples
is True.

• ValueError – If there is a conflict between predict_keys and predictions. For example
if predict_keys is not None but tf.estimator.EstimatorSpec.predictions is not a dict.

train(input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)
Trains a model given training data input_fn.

NOTE: If a given input_fn raises an OutOfRangeError, then all of training will exit. The best practice
is to make the training dataset repeat forever, in order to perform model search for more than one iteration.

Parameters

• input_fn – A function that provides input data for training as minibatches. See
[Premade Estimators](https://tensorflow.org/guide/premade_estimators#create_input_
functions) for more information. The function should construct and return one of the
following:

– A tf.data.Dataset object: Outputs of Dataset object must be a tuple (features,
labels) with same constraints as below.

– A tuple (features, labels): Where features is a tf.Tensor or a dictionary of string
feature name to Tensor and labels is a Tensor or a dictionary of string label name to
Tensor. Both features and labels are consumed by model_fn. They should satisfy the
expectation of model_fn from inputs.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks
inside the training loop.

• steps – Number of steps for which to train the model. If None, train forever or train
until input_fn generates the tf.errors.OutOfRange error or StopIteration ex-
ception. steps works incrementally. If you call two times train(steps=10) then training
occurs in total 20 steps. If OutOfRange or StopIteration occurs in the middle,
training stops before 20 steps. If you don’t want to have incremental behavior please set
max_steps instead. If set, max_steps must be None.

• max_steps – Number of total steps for which to train model. If None, train
forever or train until input_fn generates the tf.errors.OutOfRange error or

36 Chapter 9. adanet

https://tensorflow.org/guide/premade_estimators#create_input_functions
https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release 0.8.0

StopIteration exception. If set, steps must be None. If OutOfRange or
StopIteration occurs in the middle, training stops before max_steps steps. Two
calls to train(steps=100) means 200 training iterations. On the other hand, two calls to
train(max_steps=100) means that the second call will not do any iteration since first call
did all 100 steps.

• saving_listeners – list of CheckpointSaverListener objects. Used for call-
backs that run immediately before or after checkpoint savings.

Returns self, for chaining.

Raises

• ValueError – If both steps and max_steps are not None.

• ValueError – If either steps or max_steps <= 0.

9.1.4 TPUEstimator

class adanet.TPUEstimator(head, subnetwork_generator, max_iteration_steps, en-
semblers=None, ensemble_strategies=None, evalua-
tor=None, report_materializer=None, metric_fn=None,
force_grow=False, replicate_ensemble_in_training=False,
adanet_loss_decay=0.9, model_dir=None, report_dir=None, con-
fig=None, use_tpu=True, eval_on_tpu=True, train_batch_size=None,
eval_batch_size=None, embedding_config_spec=None,
debug=False, enable_ensemble_summaries=True,
enable_subnetwork_summaries=True, ex-
port_subnetwork_logits=False, export_subnetwork_last_layer=True,
global_step_combiner_fn=<function reduce_mean_v1>,
max_iterations=None, replay_config=None, **kwargs)

Bases: adanet.core.estimator.Estimator, tensorflow_estimator.python.
estimator.tpu.tpu_estimator.TPUEstimator

An adanet.Estimator capable of training and evaluating on TPU.

Unless use_tpu=False, training will run on TPU. However, certain parts of the AdaNet training loop, such
as report materialization and best candidate selection, will still occurr on CPU. Furthermore, inference also
occurs on CPU.

TODO: Provide the missing functionality detailed below. N.B: Embeddings using the TPUEmbedding (i.e.
embedding_config_spec is provided) only support shared_embedding_columns when running for
multiple AdaNet iterations. Using regular embedding_columns will cause iterations 2..n to fail because of
mismatched embedding scopes.

Parameters

• head – See adanet.Estimator.

• subnetwork_generator – See adanet.Estimator.

• max_iteration_steps – See adanet.Estimator.

• ensemblers – See adanet.Estimator.

• ensemble_strategies – See adanet.Estimator.

• evaluator – See adanet.Estimator.

• report_materializer – See adanet.Estimator.

• metric_fn – See adanet.Estimator.

9.1. Estimators 37

adanet Documentation, Release 0.8.0

• force_grow – See adanet.Estimator.

• replicate_ensemble_in_training – See adanet.Estimator.

• adanet_loss_decay – See adanet.Estimator.

• report_dir – See adanet.Estimator.

• config – See adanet.Estimator.

• use_tpu – Boolean to enable training on TPU. Defaults to True and is only provided to
allow debugging models on CPU/GPU. Use adanet.Estimator instead if you do not
plan to run on TPU.

• eval_on_tpu – Boolean to enable evaluating on TPU. Defaults to True. Ignored if
use_tpu=False.

• train_batch_size – See tf.compat.v1.estimator.tpu.TPUEstimator.

• eval_batch_size – See tf.compat.v1.estimator.tpu.TPUEstimator.

• embedding_config_spec – See tf.compat.v1.estimator.tpu.
TPUEstimator.

• debug – See adanet.Estimator.

• enable_ensemble_summaries – See adanet.Estimator.

• enable_subnetwork_summaries – See adanet.Estimator.

• export_subnetwork_logits – Whether to include subnetwork logits in exports.

• export_subnetwork_last_layer – Whether to include subnetwork last layer in ex-
ports.

• global_step_combiner_fn – See adanet.Estimator.

• max_iterations – See adanet.Estimator.

• replay_config – See adanet.Estimator.

• **kwargs – Extra keyword args passed to the parent.

eval_dir(name=None)
Shows the directory name where evaluation metrics are dumped.

Parameters name – Name of the evaluation if user needs to run multiple evaluations on different
data sets, such as on training data vs test data. Metrics for different evaluations are saved in
separate folders, and appear separately in tensorboard.

Returns A string which is the path of directory contains evaluation metrics.

evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)
Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data. Evaluates until: - steps batches are processed,
or - input_fn raises an end-of-input exception (tf.errors.OutOfRangeError or StopIteration).

Parameters

• input_fn – A function that constructs the input data for evaluation. See [Premade
Estimators](https://tensorflow.org/guide/premade_estimators#create_input_functions) for
more information. The function should construct and return one of the following: * A
tf.data.Dataset object: Outputs of Dataset object must be a tuple (features, labels) with
same constraints as below. * A tuple (features, labels): Where features is a tf.Tensor or a
dictionary of string feature name to Tensor and labels is a Tensor or a dictionary of string

38 Chapter 9. adanet

https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release 0.8.0

label name to Tensor. Both features and labels are consumed by model_fn. They should
satisfy the expectation of model_fn from inputs.

• steps – Number of steps for which to evaluate model. If None, evaluates until input_fn
raises an end-of-input exception.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the evaluation call.

• checkpoint_path – Path of a specific checkpoint to evaluate. If None, the latest
checkpoint in model_dir is used. If there are no checkpoints in model_dir, evaluation is
run with newly initialized Variables instead of ones restored from checkpoint.

• name – Name of the evaluation if user needs to run multiple evaluations on different data
sets, such as on training data vs test data. Metrics for different evaluations are saved in
separate folders, and appear separately in tensorboard.

Returns A dict containing the evaluation metrics specified in model_fn keyed by name, as well
as an entry global_step which contains the value of the global step for which this evaluation
was performed. For canned estimators, the dict contains the loss (mean loss per mini-batch)
and the average_loss (mean loss per sample). Canned classifiers also return the accuracy.
Canned regressors also return the label/mean and the prediction/mean.

Raises ValueError – If steps <= 0.

experimental_export_all_saved_models(export_dir_base, input_receiver_fn_map,
assets_extra=None, as_text=False, check-
point_path=None)

Exports a SavedModel with tf.MetaGraphDefs for each requested mode.

For each mode passed in via the input_receiver_fn_map, this method builds a new graph by call-
ing the input_receiver_fn to obtain feature and label Tensor‘s. Next, this method calls the ‘Es-
timator’s model_fn in the passed mode to generate the model graph based on those features and
labels, and restores the given checkpoint (or, lacking that, the most recent checkpoint) into the
graph. Only one of the modes is used for saving variables to the SavedModel (order of preference:
tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL, then tf.estimator.ModeKeys.PREDICT), such
that up to three tf.MetaGraphDefs are saved with a single set of variables in a single SavedModel directory.

For the variables and tf.MetaGraphDefs, a timestamped export directory below export_dir_base, and writes
a SavedModel into it containing the tf.MetaGraphDef for the given mode and its associated signatures.

For prediction, the exported MetaGraphDef will provide one SignatureDef for each element of the
export_outputs dict returned from the model_fn, named using the same keys. One of these keys
is always tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating
which signature will be served when a serving request does not specify one. For each signature, the outputs
are provided by the corresponding tf.estimator.export.ExportOutput‘s, and the inputs are always the input
receivers provided by the ‘serving_input_receiver_fn.

For training and evaluation, the train_op is stored in an extra collection, and loss, metrics, and predictions
are included in a SignatureDef for the mode in question.

Extra assets may be written into the SavedModel via the assets_extra argument. This should be a dict,
where each key gives a destination path (including the filename) relative to the assets.extra directory. The
corresponding value gives the full path of the source file to be copied. For example, the simple case of
copying a single file without renaming it is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

Parameters

• export_dir_base – A string containing a directory in which to create timestamped
subdirectories containing exported ‘SavedModel‘s.

9.1. Estimators 39

adanet Documentation, Release 0.8.0

• input_receiver_fn_map – dict of tf.estimator.ModeKeys to input_receiver_fn map-
pings, where the input_receiver_fn is a function that takes no arguments and returns the
appropriate subclass of InputReceiver.

• assets_extra – A dict specifying how to populate the assets.extra directory within the
exported SavedModel, or None if no extra assets are needed.

• as_text – whether to write the SavedModel proto in text format.

• checkpoint_path – The checkpoint path to export. If None (the default), the most
recent checkpoint found within the model directory is chosen.

Returns The string path to the exported directory.

Raises ValueError – if any input_receiver_fn is None, no export_outputs are provided, or no
checkpoint can be found.

export_saved_model(export_dir_base, serving_input_receiver_fn, assets_extra=None,
as_text=False, checkpoint_path=None, experimental_mode=’infer’)

Exports inference graph as a SavedModel into the given dir.

For a detailed guide, see [Using SavedModel with Estimators](https://tensorflow.org/guide/saved_model#
using_savedmodel_with_estimators).

This method builds a new graph by first calling the serving_input_receiver_fn to obtain feature Tensor‘s,
and then calling this ‘Estimator’s model_fn to generate the model graph based on those features. It restores
the given checkpoint (or, lacking that, the most recent checkpoint) into this graph in a fresh session. Finally
it creates a timestamped export directory below the given export_dir_base, and writes a SavedModel into
it containing a single tf.MetaGraphDef saved from this session.

The exported MetaGraphDef will provide one SignatureDef for each element of the ex-
port_outputs dict returned from the model_fn, named using the same keys. One of these keys
is always tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating
which signature will be served when a serving request does not specify one. For each signature, the outputs
are provided by the corresponding tf.estimator.export.ExportOutput‘s, and the inputs are always the input
receivers provided by the ‘serving_input_receiver_fn.

Extra assets may be written into the SavedModel via the assets_extra argument. This should be a dict,
where each key gives a destination path (including the filename) relative to the assets.extra directory. The
corresponding value gives the full path of the source file to be copied. For example, the simple case of
copying a single file without renaming it is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

The experimental_mode parameter can be used to export a single train/eval/predict graph as a SavedModel.
See experimental_export_all_saved_models for full docs.

Parameters

• export_dir_base – A string containing a directory in which to create timestamped
subdirectories containing exported ‘SavedModel‘s.

• serving_input_receiver_fn – A function that takes no ar-
gument and returns a tf.estimator.export.ServingInputReceiver or
tf.estimator.export.TensorServingInputReceiver.

• assets_extra – A dict specifying how to populate the assets.extra directory within the
exported SavedModel, or None if no extra assets are needed.

• as_text – whether to write the SavedModel proto in text format.

• checkpoint_path – The checkpoint path to export. If None (the default), the most
recent checkpoint found within the model directory is chosen.

40 Chapter 9. adanet

https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators
https://tensorflow.org/guide/saved_model#using_savedmodel_with_estimators

adanet Documentation, Release 0.8.0

• experimental_mode – tf.estimator.ModeKeys value indicating with mode will be ex-
ported. Note that this feature is experimental.

Returns The string path to the exported directory.

Raises

• ValueError – if no serving_input_receiver_fn is provided, no

• export_outputs are provided, or no checkpoint can be found.

export_savedmodel(export_dir_base, serving_input_receiver_fn, assets_extra=None,
as_text=False, checkpoint_path=None, strip_default_attrs=False)

DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for
updating: This function has been renamed, use export_saved_model instead.

get_variable_names()
Returns list of all variable names in this model.

Returns List of names.

Raises ValueError – If the Estimator has not produced a checkpoint yet.

get_variable_value(name)
Returns value of the variable given by name.

Parameters name – string or a list of string, name of the tensor.

Returns Numpy array - value of the tensor.

Raises ValueError – If the Estimator has not produced a checkpoint yet.

latest_checkpoint()
Finds the filename of the latest saved checkpoint file in model_dir.

Returns The full path to the latest checkpoint or None if no checkpoint was found.

model_fn
Returns the model_fn which is bound to self.params.

Returns def model_fn(features, labels, mode, config)

Return type The model_fn with following signature

predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None,
yield_single_examples=True)

Yields predictions for given features.

Please note that interleaving two predict outputs does not work. See: [issue/20506](https://github.com/
tensorflow/tensorflow/issues/20506#issuecomment-422208517)

Parameters

• input_fn – A function that constructs the features. Prediction continues un-
til input_fn raises an end-of-input exception (tf.errors.OutOfRangeError or StopIter-
ation). See [Premade Estimators](https://tensorflow.org/guide/premade_estimators#
create_input_functions) for more information. The function should construct and return
one of the following:

– A tf.data.Dataset object: Outputs of Dataset object must have same constraints as be-
low.

– features: A tf.Tensor or a dictionary of string feature name to Tensor. features are
consumed by model_fn. They should satisfy the expectation of model_fn from inputs.

9.1. Estimators 41

https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517
https://tensorflow.org/guide/premade_estimators#create_input_functions
https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release 0.8.0

– A tuple, in which case the first item is extracted as features.

• predict_keys – list of str, name of the keys to predict. It is used if the
tf.estimator.EstimatorSpec.predictions is a dict. If predict_keys is used then rest of the
predictions will be filtered from the dictionary. If None, returns all.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks inside
the prediction call.

• checkpoint_path – Path of a specific checkpoint to predict. If None, the latest check-
point in model_dir is used. If there are no checkpoints in model_dir, prediction is run with
newly initialized Variables instead of ones restored from checkpoint.

• yield_single_examples – If False, yields the whole batch as returned by the
model_fn instead of decomposing the batch into individual elements. This is useful if
model_fn returns some tensors whose first dimension is not equal to the batch size.

Yields Evaluated values of predictions tensors.

Raises

• ValueError – If batch length of predictions is not the same and yield_single_examples
is True.

• ValueError – If there is a conflict between predict_keys and predictions. For example
if predict_keys is not None but tf.estimator.EstimatorSpec.predictions is not a dict.

train(input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)
Trains a model given training data input_fn.

NOTE: If a given input_fn raises an OutOfRangeError, then all of training will exit. The best practice
is to make the training dataset repeat forever, in order to perform model search for more than one iteration.

Parameters

• input_fn – A function that provides input data for training as minibatches. See
[Premade Estimators](https://tensorflow.org/guide/premade_estimators#create_input_
functions) for more information. The function should construct and return one of the
following:

– A tf.data.Dataset object: Outputs of Dataset object must be a tuple (features,
labels) with same constraints as below.

– A tuple (features, labels): Where features is a tf.Tensor or a dictionary of string
feature name to Tensor and labels is a Tensor or a dictionary of string label name to
Tensor. Both features and labels are consumed by model_fn. They should satisfy the
expectation of model_fn from inputs.

• hooks – List of tf.train.SessionRunHook subclass instances. Used for callbacks
inside the training loop.

• steps – Number of steps for which to train the model. If None, train forever or train
until input_fn generates the tf.errors.OutOfRange error or StopIteration ex-
ception. steps works incrementally. If you call two times train(steps=10) then training
occurs in total 20 steps. If OutOfRange or StopIteration occurs in the middle,
training stops before 20 steps. If you don’t want to have incremental behavior please set
max_steps instead. If set, max_steps must be None.

• max_steps – Number of total steps for which to train model. If None, train
forever or train until input_fn generates the tf.errors.OutOfRange error or
StopIteration exception. If set, steps must be None. If OutOfRange or
StopIteration occurs in the middle, training stops before max_steps steps. Two

42 Chapter 9. adanet

https://tensorflow.org/guide/premade_estimators#create_input_functions
https://tensorflow.org/guide/premade_estimators#create_input_functions

adanet Documentation, Release 0.8.0

calls to train(steps=100) means 200 training iterations. On the other hand, two calls to
train(max_steps=100) means that the second call will not do any iteration since first call
did all 100 steps.

• saving_listeners – list of CheckpointSaverListener objects. Used for call-
backs that run immediately before or after checkpoint savings.

Returns self, for chaining.

Raises

• ValueError – If both steps and max_steps are not None.

• ValueError – If either steps or max_steps <= 0.

9.2 Evaluator

Measures adanet.Ensemble performance on a given dataset.

9.2.1 Evaluator

class adanet.Evaluator(input_fn, metric_name=’adanet_loss’, objective=’minimize’, steps=None)
Evaluates candidate ensemble performance.

class Objective
The Evaluator objective for the metric being optimized.

Two objectives are currently supported:

• MINIMIZE: Lower is better for the metric being optimized.

• MAXIMIZE: Higher is better for the metric being optimized.

__init__(input_fn, metric_name=’adanet_loss’, objective=’minimize’, steps=None)
Initializes a new Evaluator instance.

Parameters

• input_fn – Input function returning a tuple of: features - Dictionary of string feature
name to Tensor. labels - Tensor of labels.

• metric_name – The name of the evaluation metrics to use when choosing the best
ensemble. Must refer to a valid evaluation metric.

• objective – Either Objective.MINIMIZE or Objective.MAXIMIZE.

• steps – Number of steps for which to evaluate the ensembles. If an OutOfRangeEr-
ror occurs, evaluation stops. If set to None, will iterate the dataset until all inputs are
exhausted.

Returns An adanet.Evaluator instance.

evaluate(sess, ensemble_metrics)
Evaluates the given AdaNet objectives on the data from input_fn.

The candidates are fed the same batches of features and labels as provided by input_fn, and their losses are
computed and summed over steps batches.

Parameters

• sess – Session instance with most recent variable values loaded.

9.2. Evaluator 43

adanet Documentation, Release 0.8.0

• ensemble_metrics – A list dictionaries of tf.metrics for each candidate ensemble.

Returns List of evaluated metrics.

input_fn
Return the input_fn.

metric_name
Returns the name of the metric being optimized.

objective_fn
Returns a fn which selects the best metric based on the objective.

steps
Return the number of evaluation steps.

9.3 Summary

Extends tf.summary to power AdaNet’s TensorBoard integration.

9.3.1 Summary

class adanet.Summary
Interface for writing summaries to Tensorboard.

audio(name, tensor, sample_rate, max_outputs=3, family=None, encoding=None, description=None)
Writes an audio summary.

Parameters

• name – A name for this summary. The summary tag used for TensorBoard will be this
name prefixed by any active name scopes.

• tensor – A Tensor representing audio data with shape [k, t, c], where k is the number of
audio clips, t is the number of frames, and c is the number of channels. Elements should
be floating-point values in [-1.0, 1.0]. Any of the dimensions may be statically unknown
(i.e., None).

• sample_rate – An int or rank-0 int32 Tensor that represents the sample rate, in Hz.
Must be positive.

• max_outputs – Optional int or rank-0 integer Tensor. At most this many audio clips
will be emitted at each step. When more than max_outputs many clips are provided, the
first max_outputs many clips will be used and the rest silently discarded.

• family – Optional; if provided, used as the prefix of the summary tag name, which
controls the tab name used for display on Tensorboard. DEPRECATED in TF 2.

• encoding – Optional constant str for the desired encoding. Only “wav” is currently sup-
ported, but this is not guaranteed to remain the default, so if you want “wav” in particular,
set this explicitly.

• description – Optional long-form description for this summary, as a constant str.
Markdown is supported. Defaults to empty.

Returns A scalar Tensor of type string. The serialized tf.Summary protocol buffer.

44 Chapter 9. adanet

adanet Documentation, Release 0.8.0

histogram(name, values, family=None, buckets=None, description=None)
Outputs a tf.Summary protocol buffer with a histogram.

Adding a histogram summary makes it possible to visualize your data’s distribution in TensorBoard. You
can see a detailed explanation of the TensorBoard histogram dashboard [here](https://www.tensorflow.org/
get_started/tensorboard_histograms).

The generated [tf.Summary](tensorflow/core/framework/summary.proto) has one summary value contain-
ing a histogram for values.

This op reports an InvalidArgument error if any value is not finite.

Parameters

• name – A name for this summary. The summary tag used for TensorBoard will be this
name prefixed by any active name scopes.

• values – A Tensor of any shape. Must be castable to float64.

• family – Optional; if provided, used as the prefix of the summary tag name, which
controls the tab name used for display on Tensorboard. DEPRECATED in TF 2.

• buckets – Optional positive int. The output will have this many buckets, except in two
edge cases. If there is no data, then there are no buckets. If there is data but all points have
the same value, then there is one bucket whose left and right endpoints are the same.

• description – Optional long-form description for this summary, as a constant str.
Markdown is supported. Defaults to empty.

Returns A scalar Tensor of type string. The serialized tf.Summary protocol buffer.

image(name, tensor, max_outputs=3, family=None, description=None)
Outputs a tf.Summary protocol buffer with images.

The summary has up to max_outputs summary values containing images. The images are built from tensor
which must be 4-D with shape [batch_size, height, width, channels] and where channels can be:

• 1: tensor is interpreted as Grayscale.

• 3: tensor is interpreted as RGB.

• 4: tensor is interpreted as RGBA.

The images have the same number of channels as the input tensor. For float input, the values are normalized
one image at a time to fit in the range [0, 255]. uint8 values are unchanged. The op uses two different
normalization algorithms:

• If the input values are all positive, they are rescaled so the largest

one is 255. * If any input value is negative, the values are shifted so input value 0.0

is at 127. They are then rescaled so that either the smallest value is 0, or the largest one is 255.

The tag in the outputted tf.Summary.Value protobufs is generated based on the name, with a suffix depend-
ing on the max_outputs setting:

• If max_outputs is 1, the summary value tag is ‘name/image’.

• If max_outputs is greater than 1, the summary value tags are

generated sequentially as ‘name/image/0’, ‘name/image/1’, etc.

Parameters

9.3. Summary 45

https://www.tensorflow.org/get_started/tensorboard_histograms
https://www.tensorflow.org/get_started/tensorboard_histograms

adanet Documentation, Release 0.8.0

• name – A name for this summary. The summary tag used for TensorBoard will be this
name prefixed by any active name scopes.

• tensor – A Tensor representing pixel data with shape [k, h, w, c], where k is the number
of images, h and w are the height and width of the images, and c is the number of channels,
which should be 1, 2, 3, or 4 (grayscale, grayscale with alpha, RGB, RGBA). Any of the
dimensions may be statically unknown (i.e., None). Floating point data will be clipped to
the range [0,1).

• max_outputs – Optional int or rank-0 integer Tensor. At most this many images will
be emitted at each step. When more than max_outputs many images are provided, the first
max_outputs many images will be used and the rest silently discarded.

• family – Optional; if provided, used as the prefix of the summary tag name, which
controls the tab name used for display on Tensorboard. DEPRECATED in TF 2.

• description – Optional long-form description for this summary, as a constant str.
Markdown is supported. Defaults to empty.

Returns A scalar Tensor of type string. The serialized tf.Summary protocol buffer.

scalar(name, tensor, family=None, description=None)
Outputs a tf.Summary protocol buffer containing a single scalar value.

The generated tf.Summary has a Tensor.proto containing the input Tensor.

Parameters

• name – A name for this summary. The summary tag used for TensorBoard will be this
name prefixed by any active name scopes.

• tensor – A real numeric scalar value, convertible to a float32 Tensor.

• family – Optional; if provided, used as the prefix of the summary tag name, which
controls the tab name used for display on Tensorboard. DEPRECATED in TF 2.

• description – Optional long-form description for this summary, as a constant str.
Markdown is supported. Defaults to empty.

Returns A scalar Tensor of type string. Which contains a tf.Summary protobuf.

Raises ValueError – If tensor has the wrong shape or type.

9.4 ReportMaterializer

9.4.1 ReportMaterializer

class adanet.ReportMaterializer(input_fn, steps=None)
Materializes reports.

Specifically it materializes a subnetwork’s adanet.subnetwork.Report instances into adanet.
subnetwork.MaterializedReport instances.

Requires an input function input_fn that returns a tuple of:

• features: Dictionary of string feature name to Tensor.

• labels: Tensor of labels.

Parameters

46 Chapter 9. adanet

adanet Documentation, Release 0.8.0

• input_fn – The input function.

• steps – Number of steps for which to materialize the ensembles. If an OutOfRangeError
occurs, materialization stops. If set to None, will iterate the dataset until all inputs are
exhausted.

Returns A ReportMaterializer instance.

input_fn
Returns the input_fn that materialize_subnetwork_reports would run on.

Even though this property appears to be unused, it would be used to build the AdaNet model graph inside
AdaNet estimator.train(). After the graph is built, the queue_runners are started and the initializers are run,
AdaNet estimator.train() passes its tf.Session as an argument to materialize_subnetwork_reports(), thus
indirectly making input_fn available to materialize_subnetwork_reports.

materialize_subnetwork_reports(sess, iteration_number, subnetwork_reports, in-
cluded_subnetwork_names)

Materializes the Tensor objects in subnetwork_reports using sess.

This converts the Tensors in subnetwork_reports to ndarrays, logs the progress, converts the ndarrays to
python primitives, then packages them into adanet.subnetwork.MaterializedReports.

Parameters

• sess – Session instance with most recent variable values loaded.

• iteration_number – Integer iteration number.

• subnetwork_reports – Dict mapping string names to subnetwork.Report objects to
be materialized.

• included_subnetwork_names – List of string names of the ‘subnetwork.Report‘s
that are included in the final ensemble.

Returns List of adanet.subnetwork.MaterializedReport objects.

steps
Return the number of steps.

9.4. ReportMaterializer 47

adanet Documentation, Release 0.8.0

48 Chapter 9. adanet

CHAPTER 10

adanet.ensemble

Defines built-in ensemble methods and interfaces for custom ensembles.

10.1 Ensembles

Interfaces and containers for defining ensembles.

10.1.1 Ensemble

class adanet.ensemble.Ensemble
An abstract ensemble of subnetworks.

logits
Ensemble logits tf.Tensor.

predictions
Optional dict of Ensemble predictions to be merged in EstimatorSpec.

These will be additional (over the default included by the head) predictions which will be included in the
EstimatorSpec in predictions and export_outputs (wrapped as PredictOutput).

subnetworks
Returns an ordered Iterable of the ensemble’s subnetworks.

10.1.2 ComplexityRegularized

class adanet.ensemble.ComplexityRegularized
An AdaNet ensemble where subnetworks are regularized by model complexity.

49

adanet Documentation, Release 0.8.0

Hence an ensemble is a collection of subnetworks which forms a neural network through the weighted sum of
their outputs:

𝐹 (𝑥) =

𝑁∑︁
𝑖=1

𝑤𝑖ℎ𝑖(𝑥) + 𝑏

Parameters

• weighted_subnetworks – List of adanet.ensemble.WeightedSubnetwork
instances that form this ensemble. Ordered from first to most recent.

• bias – Bias term tf.Tensor or dict of string to bias term tf.Tensor (for multi-head)
for the ensemble’s logits.

• logits – Logits tf.Tensor or dict of string to logits tf.Tensor (for multi-head).
The result of the function f as defined in Section 5.1 which is the sum of the logits of all
adanet.WeightedSubnetwork instances in ensemble.

• subnetworks – List of adanet.subnetwork.Subnetwork instances that form this
ensemble. This is kept together with weighted_subnetworks for legacy reasons.

• complexity_regularization – Regularization to be added in the Adanet loss.

Returns An adanet.ensemble.Weighted instance.

10.1.3 MeanEnsemble

class adanet.ensemble.MeanEnsemble
Mean ensemble.

logits
Logits tf.Tensor or dict of string to logits tf.Tensor (for multi-head).

subnetworks
List of adanet.subnetwork.Subnetwork instances that form this ensemble.

predictions
Optional dict mapping prediction keys to Tensors. MeanEnsembler can export mean_last_layer if the
subnetworks have the last_layer of the same dimension.

10.1.4 MixtureWeightType

class adanet.ensemble.MixtureWeightType
Mixture weight types available for learning subnetwork contributions.

The following mixture weight types are defined:

• SCALAR: Produces a rank 0 Tensor mixture weight.

• VECTOR: Produces a rank 1 Tensor mixture weight.

• MATRIX: Produces a rank 2 Tensor mixture weight.

10.1.5 WeightedSubnetwork

class adanet.ensemble.WeightedSubnetwork
An AdaNet weighted subnetwork.

50 Chapter 10. adanet.ensemble

adanet Documentation, Release 0.8.0

A weighted subnetwork is a weight applied to a subnetwork’s last layer or logits (depending on the mixture
weights type).

Parameters

• name – String name of subnetwork as defined by its adanet.subnetwork.
Builder.

• iteration_number – Integer iteration when the subnetwork was created.

• weight – The weight tf.Tensor or dict of string to weight tf.Tensor (for multi-
head) to apply to this subnetwork. The AdaNet paper refers to this weight as 𝑤 in Equations
(4), (5), and (6).

• logits – The output tf.Tensor or dict of string to weight tf.Tensor (for multi-
head) after the matrix multiplication of weight and the subnetwork’s last_layer. The
output’s shape is [batch_size, logits_dimension]. It is equivalent to a linear logits layer in a
neural network.

• subnetwork – The adanet.subnetwork.Subnetwork to weight.

Returns An adanet.ensemble.WeightedSubnetwork object.

10.2 Ensemblers

Ensemble learning definitions.

10.2.1 Ensembler

class adanet.ensemble.Ensembler
An abstract ensembler.

build_ensemble(subnetworks, previous_ensemble_subnetworks, features, labels, logits_dimension,
training, iteration_step, summary, previous_ensemble)

Builds an ensemble of subnetworks.

Accessing the global step via tf.train.get_or_create_global_step() or tf.train.
get_global_step() within this scope will return an incrementable iteration step since the beginning
of the iteration.

Parameters

• subnetworks – Ordered iterable of adanet.subnetwork.Subnetwork in-
stances to ensemble. Must have at least one element.

• previous_ensemble_subnetworks – Ordered iterable of adanet.
subnetwork.Subnetwork instances present in previous ensemble to be used.
The subnetworks from previous_ensemble not included in this list should be pruned. Can
be set to None or empty.

• features – Input dict of tf.Tensor objects.

• labels – Labels tf.Tensor or a dictionary of string label name to tf.Tensor (for
multi-head). Can be None.

• logits_dimension – Size of the last dimension of the logits tf.Tensor. Typically,
logits have for shape [batch_size, logits_dimension].

• training – A python boolean indicating whether the graph is in training mode or pre-
diction mode.

10.2. Ensemblers 51

adanet Documentation, Release 0.8.0

• iteration_step – Integer tf.Tensor representing the step since the beginning of
the current iteration, as opposed to the global step.

• summary – An adanet.Summary for scoping summaries to individual ensembles in
Tensorboard. Using tf.summary()within this scope will use this adanet.Summary
under the hood.

• previous_ensemble – The best adanet.Ensemble from iteration t-1. The cre-
ated subnetwork will extend the previous ensemble to form the adanet.Ensemble at
iteration t.

Returns An adanet.ensemble.Ensemble subclass instance.

build_train_op(ensemble, loss, var_list, labels, iteration_step, summary, previous_ensemble)
Returns an op for training an ensemble.

Accessing the global step via tf.train.get_or_create_global_step() or tf.train.
get_global_step() within this scope will return an incrementable iteration step since the beginning
of the iteration.

Parameters

• ensemble – The adanet.ensemble.Ensemble subclass instance returned by this
instance’s build_ensemble().

• loss – A tf.Tensor containing the ensemble’s loss to minimize.

• var_list – List of ensemble tf.Variable parameters to update as part of the train-
ing operation.

• labels – Labels tf.Tensor or a dictionary of string label name to tf.Tensor (for
multi-head).

• iteration_step – Integer tf.Tensor representing the step since the beginning of
the current iteration, as opposed to the global step.

• summary – An adanet.Summary for scoping summaries to individual ensembles in
Tensorboard. Using tf.summary within this scope will use this adanet.Summary
under the hood.

• previous_ensemble – The best adanet.ensemble.Ensemble from the previ-
ous iteration.

Returns Either a train op or an adanet.ensemble.TrainOpSpec.

name
This ensembler’s unique string name.

10.2.2 ComplexityRegularizedEnsembler

class adanet.ensemble.ComplexityRegularizedEnsembler(optimizer=None, mix-
ture_weight_type=’scalar’,
mix-
ture_weight_initializer=None,
warm_start_mixture_weights=False,
model_dir=None,
adanet_lambda=0.0,
adanet_beta=0.0,
use_bias=False, name=None)

The AdaNet algorithm implemented as an adanet.ensemble.Ensembler.

52 Chapter 10. adanet.ensemble

adanet Documentation, Release 0.8.0

The AdaNet algorithm was introduced in the [Cortes et al. ICML 2017] paper: https://arxiv.org/abs/1607.01097.

The AdaNet algorithm uses a weak learning algorithm to iteratively generate a set of candidate subnetworks that
attempt to minimize the loss function defined in Equation (4) as part of an ensemble. At the end of each iteration,
the best candidate is chosen based on its ensemble’s complexity-regularized train loss. New subnetworks are
allowed to use any subnetwork weights within the previous iteration’s ensemble in order to improve upon them.
If the complexity-regularized loss of the new ensemble, as defined in Equation (4), is less than that of the
previous iteration’s ensemble, the AdaNet algorithm continues onto the next iteration.

AdaNet attempts to minimize the following loss function to learn the mixture weights 𝑤 of each subnetwork ℎ
in the ensemble with differentiable convex non-increasing surrogate loss function Φ:

Equation (4):

𝐹 (𝑤) =
1

𝑚

𝑚∑︁
𝑖=1

Φ

⎛⎝ 𝑁∑︁
𝑗=1

𝑤𝑗ℎ𝑗(𝑥𝑖), 𝑦𝑖

⎞⎠ +

𝑁∑︁
𝑗=1

(𝜆𝑟(ℎ𝑗) + 𝛽) |𝑤𝑗 |

with 𝜆 >= 0 and 𝛽 >= 0.

Parameters

• optimizer – String, tf.train.Optimizer object, or callable that creates the op-
timizer to use for training the ensemble weights. If left as None, tf.no_op() is used
instead.

• mixture_weight_type – The adanet.ensemble.MixtureWeightType defin-
ing which mixture weight type to learn on top of the subnetworks’ logits.

• mixture_weight_initializer – The initializer for mixture_weights. When None,
the default is different according to mixture_weight_type:

– SCALAR initializes to 1/𝑁 where 𝑁 is the number of subnetworks in the ensemble giving
a uniform average.

– VECTOR initializes each entry to 1/𝑁 where 𝑁 is the number of subnetworks in the
ensemble giving a uniform average.

– MATRIX uses tf.zeros_initializer().

• warm_start_mixture_weights – Whether, at the beginning of an iteration, to ini-
tialize the mixture weights of the subnetworks from the previous ensemble to their learned
value at the previous iteration, as opposed to retraining them from scratch. Takes precedence
over the value for mixture_weight_initializer for subnetworks from previous it-
erations.

• model_dir – The model dir to use for warm-starting mixture weights and bias at the logit
layer. Ignored if warm_start_mixture_weights is False.

• adanet_lambda – Float multiplier 𝜆 for applying 𝐿1 regularization to subnetworks’ mix-
ture weights 𝑤 in the ensemble proportional to their complexity. See Equation (4) in the
AdaNet paper.

• adanet_beta – Float 𝐿1 regularization multiplier 𝛽 to apply equally to all subnetworks’
weights 𝑤 in the ensemble regardless of their complexity. See Equation (4) in the AdaNet
paper.

• use_bias – Whether to add a bias term to the ensemble’s logits.

• name – Optional name for the ensembler. Defaults to ‘complexity_regularized’.

Returns An adanet.ensemble.ComplexityRegularizedEnsembler instance.

Raises

10.2. Ensemblers 53

https://arxiv.org/abs/1607.01097

adanet Documentation, Release 0.8.0

• ValueError – if warm_start_mixture_weights is True but

• model_dir is None.

build_ensemble(subnetworks, previous_ensemble_subnetworks, features, labels, logits_dimension,
training, iteration_step, summary, previous_ensemble)

Builds an ensemble of subnetworks.

Accessing the global step via tf.train.get_or_create_global_step() or tf.train.
get_global_step() within this scope will return an incrementable iteration step since the beginning
of the iteration.

Parameters

• subnetworks – Ordered iterable of adanet.subnetwork.Subnetwork in-
stances to ensemble. Must have at least one element.

• previous_ensemble_subnetworks – Ordered iterable of adanet.
subnetwork.Subnetwork instances present in previous ensemble to be used.
The subnetworks from previous_ensemble not included in this list should be pruned. Can
be set to None or empty.

• features – Input dict of tf.Tensor objects.

• labels – Labels tf.Tensor or a dictionary of string label name to tf.Tensor (for
multi-head). Can be None.

• logits_dimension – Size of the last dimension of the logits tf.Tensor. Typically,
logits have for shape [batch_size, logits_dimension].

• training – A python boolean indicating whether the graph is in training mode or pre-
diction mode.

• iteration_step – Integer tf.Tensor representing the step since the beginning of
the current iteration, as opposed to the global step.

• summary – An adanet.Summary for scoping summaries to individual ensembles in
Tensorboard. Using tf.summary()within this scope will use this adanet.Summary
under the hood.

• previous_ensemble – The best adanet.Ensemble from iteration t-1. The cre-
ated subnetwork will extend the previous ensemble to form the adanet.Ensemble at
iteration t.

Returns An adanet.ensemble.Ensemble subclass instance.

build_train_op(ensemble, loss, var_list, labels, iteration_step, summary, previous_ensemble)
Returns an op for training an ensemble.

Accessing the global step via tf.train.get_or_create_global_step() or tf.train.
get_global_step() within this scope will return an incrementable iteration step since the beginning
of the iteration.

Parameters

• ensemble – The adanet.ensemble.Ensemble subclass instance returned by this
instance’s build_ensemble().

• loss – A tf.Tensor containing the ensemble’s loss to minimize.

• var_list – List of ensemble tf.Variable parameters to update as part of the train-
ing operation.

• labels – Labels tf.Tensor or a dictionary of string label name to tf.Tensor (for
multi-head).

54 Chapter 10. adanet.ensemble

adanet Documentation, Release 0.8.0

• iteration_step – Integer tf.Tensor representing the step since the beginning of
the current iteration, as opposed to the global step.

• summary – An adanet.Summary for scoping summaries to individual ensembles in
Tensorboard. Using tf.summary within this scope will use this adanet.Summary
under the hood.

• previous_ensemble – The best adanet.ensemble.Ensemble from the previ-
ous iteration.

Returns Either a train op or an adanet.ensemble.TrainOpSpec.

name
This ensembler’s unique string name.

10.2.3 MeanEnsembler

class adanet.ensemble.MeanEnsembler(name=None, add_mean_last_layer_predictions=False)
Ensembler that takes the mean of logits returned by its subnetworks.

name
Optional name for the ensembler. Defaults to ‘complexity_regularized’.

add_mean_last_layer_predictions
Set to True to add mean of last_layer in subnetworks in estimator’s predictions and export outputs.

build_ensemble(subnetworks, previous_ensemble_subnetworks, features, labels, logits_dimension,
training, iteration_step, summary, previous_ensemble)

Builds an ensemble of subnetworks.

Accessing the global step via tf.train.get_or_create_global_step() or tf.train.
get_global_step() within this scope will return an incrementable iteration step since the beginning
of the iteration.

Parameters

• subnetworks – Ordered iterable of adanet.subnetwork.Subnetwork in-
stances to ensemble. Must have at least one element.

• previous_ensemble_subnetworks – Ordered iterable of adanet.
subnetwork.Subnetwork instances present in previous ensemble to be used.
The subnetworks from previous_ensemble not included in this list should be pruned. Can
be set to None or empty.

• features – Input dict of tf.Tensor objects.

• labels – Labels tf.Tensor or a dictionary of string label name to tf.Tensor (for
multi-head). Can be None.

• logits_dimension – Size of the last dimension of the logits tf.Tensor. Typically,
logits have for shape [batch_size, logits_dimension].

• training – A python boolean indicating whether the graph is in training mode or pre-
diction mode.

• iteration_step – Integer tf.Tensor representing the step since the beginning of
the current iteration, as opposed to the global step.

• summary – An adanet.Summary for scoping summaries to individual ensembles in
Tensorboard. Using tf.summary()within this scope will use this adanet.Summary
under the hood.

10.2. Ensemblers 55

adanet Documentation, Release 0.8.0

• previous_ensemble – The best adanet.Ensemble from iteration t-1. The cre-
ated subnetwork will extend the previous ensemble to form the adanet.Ensemble at
iteration t.

Returns An adanet.ensemble.Ensemble subclass instance.

build_train_op(ensemble, loss, var_list, labels, iteration_step, summary, previous_ensemble)
Returns an op for training an ensemble.

Accessing the global step via tf.train.get_or_create_global_step() or tf.train.
get_global_step() within this scope will return an incrementable iteration step since the beginning
of the iteration.

Parameters

• ensemble – The adanet.ensemble.Ensemble subclass instance returned by this
instance’s build_ensemble().

• loss – A tf.Tensor containing the ensemble’s loss to minimize.

• var_list – List of ensemble tf.Variable parameters to update as part of the train-
ing operation.

• labels – Labels tf.Tensor or a dictionary of string label name to tf.Tensor (for
multi-head).

• iteration_step – Integer tf.Tensor representing the step since the beginning of
the current iteration, as opposed to the global step.

• summary – An adanet.Summary for scoping summaries to individual ensembles in
Tensorboard. Using tf.summary within this scope will use this adanet.Summary
under the hood.

• previous_ensemble – The best adanet.ensemble.Ensemble from the previ-
ous iteration.

Returns Either a train op or an adanet.ensemble.TrainOpSpec.

name
This ensembler’s unique string name.

10.2.4 TrainOpSpec

class adanet.ensemble.TrainOpSpec
A data structure for specifying ensembler training operations.

Parameters

• train_op – Op for the training step.

• chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the chief
worker during training.

• hooks – Iterable of tf.train.SessionRunHook objects to run on all workers during
training.

Returns An adanet.ensemble.TrainOpSpec object.

56 Chapter 10. adanet.ensemble

adanet Documentation, Release 0.8.0

10.3 Strategies

Ensemble strategies for grouping subnetworks.

10.3.1 Strategy

class adanet.ensemble.Strategy
An abstract ensemble strategy.

generate_ensemble_candidates(subnetwork_builders, previ-
ous_ensemble_subnetwork_builders)

Generates ensemble candidates to search over this iteration.

Parameters

• subnetwork_builders – Candidate adanet.subnetwork.Builder instances
for this iteration.

• previous_ensemble_subnetwork_builders – adanet.subnetwork.
Builder instances from the previous ensemble. Including only a subset of these in
a returned adanet.ensemble.Candidate is equivalent to pruning the previous
ensemble.

Returns An iterable of adanet.ensemble.Candidate instances to train and consider this
iteration.

10.3.2 SoloStrategy

class adanet.ensemble.SoloStrategy
Produces a model composed of a single subnetwork.

An ensemble of one.

This is effectively the same as pruning all previous ensemble subnetworks, and only adding one subnetwork
candidate to the ensemble.

generate_ensemble_candidates(subnetwork_builders, previ-
ous_ensemble_subnetwork_builders)

Generates ensemble candidates to search over this iteration.

Parameters

• subnetwork_builders – Candidate adanet.subnetwork.Builder instances
for this iteration.

• previous_ensemble_subnetwork_builders – adanet.subnetwork.
Builder instances from the previous ensemble. Including only a subset of these in
a returned adanet.ensemble.Candidate is equivalent to pruning the previous
ensemble.

Returns An iterable of adanet.ensemble.Candidate instances to train and consider this
iteration.

10.3.3 GrowStrategy

class adanet.ensemble.GrowStrategy
Greedily grows an ensemble, one subnetwork at a time.

10.3. Strategies 57

adanet Documentation, Release 0.8.0

generate_ensemble_candidates(subnetwork_builders, previ-
ous_ensemble_subnetwork_builders)

Generates ensemble candidates to search over this iteration.

Parameters

• subnetwork_builders – Candidate adanet.subnetwork.Builder instances
for this iteration.

• previous_ensemble_subnetwork_builders – adanet.subnetwork.
Builder instances from the previous ensemble. Including only a subset of these in
a returned adanet.ensemble.Candidate is equivalent to pruning the previous
ensemble.

Returns An iterable of adanet.ensemble.Candidate instances to train and consider this
iteration.

10.3.4 AllStrategy

class adanet.ensemble.AllStrategy
Ensembles all subnetworks from the current iteration.

generate_ensemble_candidates(subnetwork_builders, previ-
ous_ensemble_subnetwork_builders)

Generates ensemble candidates to search over this iteration.

Parameters

• subnetwork_builders – Candidate adanet.subnetwork.Builder instances
for this iteration.

• previous_ensemble_subnetwork_builders – adanet.subnetwork.
Builder instances from the previous ensemble. Including only a subset of these in
a returned adanet.ensemble.Candidate is equivalent to pruning the previous
ensemble.

Returns An iterable of adanet.ensemble.Candidate instances to train and consider this
iteration.

10.3.5 Candidate

class adanet.ensemble.Candidate
An ensemble candidate found during the search phase.

Parameters

• name – String name of this ensemble candidate.

• subnetwork_builders – Candidate adanet.subnetwork.Builder instances to
include in the ensemble.

• previous_ensemble_subnetwork_builders – adanet.subnetwork.
Builder instances to include from the previous ensemble.

58 Chapter 10. adanet.ensemble

CHAPTER 11

adanet.subnetwork

Low-level APIs for defining custom subnetworks and search spaces.

11.1 Generators

Interfaces and containers for defining subnetworks, search spaces, and search algorithms.

11.1.1 Subnetwork

class adanet.subnetwork.Subnetwork
An AdaNet subnetwork.

In the AdaNet paper, an adanet.subnetwork.Subnetwork is are called a subnetwork, and indicated by
h. A collection of weighted subnetworks form an AdaNet ensemble.

Parameters

• last_layer – tf.Tensor output or dict of string to tf.Tensor outputs (for multi-
head) of the last layer of the subnetwork, i.e the layer before the logits layer. When the
mixture weight type is MATRIX, the AdaNet algorithm takes care of computing ensemble
mixture weights matrices (one per subnetwork) that multiply the various last layers of the
ensemble’s subnetworks, and regularize them using their subnetwork’s complexity. This
field is represented by h in the AdaNet paper.

• logits – tf.Tensor logits or dict of string to tf.Tensor logits (for multi-head)
for training the subnetwork. These logits are not used in the ensemble’s outputs if the
mixture weight type is MATRIX, instead AdaNet learns its own logits (mixture weights)
from the subnetwork’s last_layers with complexity regularization. The logits are used in
the ensemble only when the mixture weights type is SCALAR or VECTOR. Even though the
logits are not used in the ensemble in some cases, they should always be supplied as adanet
uses the logits to train the subnetworks.

59

adanet Documentation, Release 0.8.0

• complexity – A scalar tf.Tensor representing the complexity of the subnetwork’s ar-
chitecture. It is used for choosing the best subnetwork at each iteration, and for regularizing
the weighted outputs of more complex subnetworks.

• persisted_tensors – DEPRECATED. See shared. Optional nested dictionary
of string to tf.Tensor to persist across iterations. At the end of an iteration,
the tf.Tensor instances will be available to subnetworks in the next iterations,
whereas others that are not part of the Subnetwork will be pruned. This allows later
adanet.subnetwork.Subnetwork instances to dynamically build upon arbitrary
tf.Tensors from previous adanet.subnetwork.Subnetwork instances.

• shared – Optional Python object(s), primitive(s), or function(s) to share with subnetworks
within the same iteration or in future iterations.

• local_init_ops – Iterable of tf.Operation objects to run to initialize local vari-
ables.

Returns A validated adanet.subnetwork.Subnetwork object.

Raises

• ValueError – If last_layer is None.

• ValueError – If logits is None.

• ValueError – If logits is a dict but last_layer is not.

• ValueError – If last_layer is a dict but logits is not.

• ValueError – If complexity is None.

• ValueError – If persisted_tensors is present but not a dictionary.

• ValueError – If persisted_tensors contains an empty nested dictionary.

11.1.2 TrainOpSpec

class adanet.subnetwork.TrainOpSpec
A data structure for specifying training operations.

Parameters

• train_op – Op for the training step.

• chief_hooks – Iterable of tf.train.SessionRunHook objects to run on the chief
worker during training.

• hooks – Iterable of tf.train.SessionRunHook objects to run on all workers during
training.

Returns A adanet.subnetwork.TrainOpSpec object.

11.1.3 Builder

class adanet.subnetwork.Builder
Bases: object

Interface for a subnetwork builder.

Given features, labels, and the best ensemble of subnetworks at iteration t-1, a Builder creates a Subnetwork to
add to a candidate ensemble at iteration t. These candidate ensembles are evaluated against one another at the
end of the iteration, and the best one is selected based on its complexity-regularized loss.

60 Chapter 11. adanet.subnetwork

adanet Documentation, Release 0.8.0

build_subnetwork(features, labels, logits_dimension, training, iteration_step, summary, previ-
ous_ensemble=None)

Returns the candidate Subnetwork to add to the ensemble.

This method will be called only once before build_subnetwork_train_op(). This method should
construct the candidate subnetwork’s graph operations and variables.

Accessing the global step via tf.train.get_or_create_global_step() or tf.train.
get_global_step() within this scope will return an incrementable iteration step since the beginning
of the iteration.

Parameters

• features – Input dict of tf.Tensor objects.

• labels – Labels tf.Tensor or a dictionary of string label name to tf.Tensor (for
multi-head). Can be None.

• logits_dimension – Size of the last dimension of the logits tf.Tensor. Typically,
logits have for shape [batch_size, logits_dimension].

• training – A python boolean indicating whether the graph is in training mode or pre-
diction mode.

• iteration_step – Integer tf.Tensor representing the step since the beginning of
the current iteration, as opposed to the global step.

• summary – An adanet.Summary for scoping summaries to individual subnetworks in
Tensorboard. Using tf.summary()within this scope will use this adanet.Summary
under the hood.

• previous_ensemble – The best adanet.Ensemble from iteration t-1. The cre-
ated subnetwork will extend the previous ensemble to form the adanet.Ensemble at
iteration t.

Returns An adanet.subnetwork.Subnetwork instance.

build_subnetwork_report()
Returns a subnetwork.Report to materialize and record.

This method will be called once after build_subnetwork(). Do NOT depend on vari-
ables created in build_subnetwork_train_op(), because they are not called before
build_subnetwork_report() is called.

If it returns None, AdaNet records the name and standard eval metrics.

build_subnetwork_train_op(subnetwork, loss, var_list, labels, iteration_step, summary, previ-
ous_ensemble)

Returns an op for training a new subnetwork.

This method will be called once after build_subnetwork().

Accessing the global step via tf.train.get_or_create_global_step() or tf.train.
get_global_step() within this scope will return an incrementable iteration step since the beginning
of the iteration.

Parameters

• subnetwork – Newest subnetwork, that is not part of the previous_ensemble.

• loss – A tf.Tensor containing the subnetwork’s loss to minimize.

• var_list – List of subnetwork tf.Variable parameters to update as part of the
training operation.

11.1. Generators 61

adanet Documentation, Release 0.8.0

• labels – Labels tf.Tensor or a dictionary of string label name to tf.Tensor (for
multi-head).

• iteration_step – Integer tf.Tensor representing the step since the beginning of
the current iteration, as opposed to the global step.

• summary – An adanet.Summary for scoping summaries to individual subnetworks in
Tensorboard. Using tf.summary within this scope will use this adanet.Summary under
the hood.

• previous_ensemble – The best Ensemble from iteration t-1. The created subnetwork
will extend the previous ensemble to form the Ensemble at iteration t. Is None for iteration
0.

Returns Either a train op or an adanet.subnetwork.TrainOpSpec.

name
Returns the unique name of this subnetwork within an iteration.

Returns String name of this subnetwork.

11.1.4 Generator

class adanet.subnetwork.Generator
Bases: object

Interface for a candidate subnetwork generator.

Given the ensemble of subnetworks at iteration t-1, this object is responsible for generating the set of candidate
subnetworks for iteration t that minimize the objective as part of an ensemble.

generate_candidates(previous_ensemble, iteration_number, previous_ensemble_reports,
all_reports, config)

Generates adanet.subnetwork.Builder instances for an iteration.

NOTE: Every call to generate_candidates() must be deterministic for the given arguments.

Parameters

• previous_ensemble – The best adanet.Ensemble from iteration t-1. DEP-
RECATED. We are transitioning away from the use of previous_ensemble in gen-
erate_candidates. New Generators should not use previous_ensemble in their im-
plementation of generate_candidates – please only use iteration_number, previ-
ous_ensemble_reports and all_reports.

• iteration_number – Python integer AdaNet iteration t, starting from 0.

• previous_ensemble_reports – List of adanet.subnetwork.
MaterializedReport instances corresponding to the Builders composing adanet.
Ensemble from iteration t-1. The first element in the list corresponds to the Builder
added in the first iteration. If a adanet.subnetwork.MaterializedReport is
not supplied to the estimator, previous_ensemble_report is None.

• all_reports – List of adanet.subnetwork.MaterializedReport in-
stances. If an adanet.subnetwork.ReportMaterializer is not supplied to the
estimator, all_reports is None. If adanet.subnetwork.ReportMaterializer is
supplied to the estimator and t=0, all_reports is an empty List. Otherwise, all_reports is
a sequence of Lists. Each element of the sequence is a List containing all the adanet.
subnetwork.MaterializedReport instances in an AdaNet iteration, starting from
iteration 0, and ending at iteration t-1.

62 Chapter 11. adanet.subnetwork

adanet Documentation, Release 0.8.0

• config – The current tf.estimator.RunConfig object to configure the runtime
settings.

Returns A list of adanet.subnetwork.Builder instances.

11.2 Reports

Containers for metadata about trained subnetworks.

11.2.1 Report

class adanet.subnetwork.Report
A container for data to be collected about a Subnetwork.

Parameters

• hparams – A dict mapping strings to python strings, ints, bools, or floats. It is meant to
contain the constants that define the adanet.subnetwork.Builder, such as dropout,
number of layers, or initial learning rate.

• attributes – A dict mapping strings to rank 0 Tensors of dtype string, int32, or float32.
It is meant to contain properties that may or may not change over the course of training the
adanet.subnetwork.Subnetwork, such as the number of parameters, the Lipschitz
constant, the 𝐿2 norm of the weights, or learning rate at materialization time.

• metrics – Dict of metric results keyed by name. The values of the dict are the results of
calling a metric function, namely a (metric_tensor, update_op) tuple. metric_tensor should
be evaluated without any impact on state (typically is a pure computation results based
on variables.). For example, it should not trigger the update_op or requires any input
fetching. This is meant to contain metrics of interest, such as the training loss, complexity
regularized loss, or standard deviation of the last layer outputs.

Returns A validated adanet.subnetwork.Report object.

Raises ValueError – If validation fails.

11.2.2 MaterializedReport

class adanet.subnetwork.MaterializedReport
Data collected about a adanet.subnetwork.Subnetwork.

Parameters

• iteration_number – A python integer for the AdaNet iteration number, starting from
0.

• name – A string, which is either the name of the corresponding Builder, or “previ-
ous_ensemble” if it refers to the previous_ensemble.

• hparams – A dict mapping strings to python strings, ints, or floats. These are constants
passed from the author of the adanet.subnetwork.Builder that was used to con-
struct this adanet.subnetwork.Subnetwork. It is meant to contain the arguments
that defined the adanet.subnetwork.Builder, such as dropout, number of layers,
or initial learning rate.

11.2. Reports 63

adanet Documentation, Release 0.8.0

• attributes – A dict mapping strings to python strings, ints, bools, or floats. These
are python primitives that come from materialized Tensors; these Tensors were defined
by the author of the adanet.subnetwork.Builder that was used to construct this
adanet.subnetwork.Subnetwork. It is meant to contain properties that may or
may not change over the course of training the adanet.subnetwork.Subnetwork,
such as the number of parameters, the Lipschitz constant, or the 𝐿2 norm of the weights.

• metrics – A dict mapping strings to python strings, ints, or floats. These are
python primitives that come from metrics that were evaluated on the trained adanet.
subnetwork.Subnetwork over some dataset; these metrics were defined by the au-
thor of the adanet.subnetwork.Builder that was used to construct this adanet.
subnetwork.Subnetwork. It is meant to contain performance metrics or measures
that could predict generalization, such as the training loss, complexity regularized loss, or
standard deviation of the last layer outputs.

• included_in_final_ensemble – A boolean denoting whether the associated
adanet.subnetwork.Subnetwork was included in the ensemble at the end of the
AdaNet iteration.

Returns An adanet.subnetwork.MaterializedReport object.

64 Chapter 11. adanet.subnetwork

CHAPTER 12

adanet.distributed

The adanet.distributed package.

This package methods for distributing computation using the TensorFlow computation graph.

12.1 PlacementStrategy

class adanet.distributed.PlacementStrategy
Abstract placement strategy for distributed training.

Given a cluster of workers, the placement strategy determines which subgraph each worker constructs.

config
Returns this strategy’s configuration.

Returns The tf.estimator.RunConfig instance that defines the cluster.

should_build_ensemble(num_subnetworks)
Whether to build the ensemble on the current worker.

Parameters num_subnetworks – Integer number of subnetworks to train in the current iter-
ation.

Returns Boolean whether to build the ensemble on the current worker.

should_build_subnetwork(num_subnetworks, subnetwork_index)
Whether to build the given subnetwork on the current worker.

Parameters

• num_subnetworks – Integer number of subnetworks to train in the current iteration.

• subnetwork_index – Integer index of the subnetwork in the list of the current itera-
tion’s subnetworks.

Returns Boolean whether to build the given subnetwork on the current worker.

65

adanet Documentation, Release 0.8.0

should_train_subnetworks(num_subnetworks)
Whether to train subnetworks on the current worker.

Parameters num_subnetworks – Integer number of subnetworks to train in the current iter-
ation.

Returns Boolean whether to train subnetworks on the current worker.

subnetwork_devices(num_subnetworks, subnetwork_index)
A context for assigning subnetwork ops to devices.

12.2 ReplicationStrategy

class adanet.distributed.ReplicationStrategy
A simple strategy that replicates the same graph on every worker.

This strategy does not scale well as the number of subnetworks and workers increases. For 𝑚 workers, 𝑛
parameter servers, and 𝑘 subnetworks, this strategy will scale with 𝑂(𝑚) training speedup, 𝑂(𝑚*𝑛*𝑘) variable
fetches from parameter servers, and 𝑂(𝑘) memory required per worker. Additionally there will be 𝑂(𝑚) stale
gradients per subnetwork when training with asynchronous SGD.

Returns A ReplicationStrategy instance for the current cluster.

should_build_ensemble(num_subnetworks)
Whether to build the ensemble on the current worker.

Parameters num_subnetworks – Integer number of subnetworks to train in the current iter-
ation.

Returns Boolean whether to build the ensemble on the current worker.

should_build_subnetwork(num_subnetworks, subnetwork_index)
Whether to build the given subnetwork on the current worker.

Parameters

• num_subnetworks – Integer number of subnetworks to train in the current iteration.

• subnetwork_index – Integer index of the subnetwork in the list of the current itera-
tion’s subnetworks.

Returns Boolean whether to build the given subnetwork on the current worker.

should_train_subnetworks(num_subnetworks)
Whether to train subnetworks on the current worker.

Parameters num_subnetworks – Integer number of subnetworks to train in the current iter-
ation.

Returns Boolean whether to train subnetworks on the current worker.

subnetwork_devices(num_subnetworks, subnetwork_index)
A context for assigning subnetwork ops to devices.

12.3 RoundRobinStrategy

class adanet.distributed.RoundRobinStrategy(drop_remainder=False, dedi-
cate_parameter_servers=True)

A strategy that round-robin assigns subgraphs to specific workers.

66 Chapter 12. adanet.distributed

adanet Documentation, Release 0.8.0

Specifically, it selects dedicated workers to only train ensemble variables, and round-robin assigns subnetworks
to dedicated subnetwork-training workers.

Unlike ReplicationStrategy , this strategy scales better with the number of subnetworks, workers, and
parameter servers. For 𝑚 workers, 𝑛 parameter servers, and 𝑘 subnetworks, this strategy will scale with 𝑂(𝑚/𝑘)
training speedup, 𝑂(𝑚 * 𝑛/𝑘) variable fetches from parameter servers, and 𝑂(1) memory required per worker.
Additionally, there will only be 𝑂(𝑚/𝑘) stale gradients per subnetwork when training with asynchronous SGD,
which reduces training instability versus ReplicationStrategy .

When there are more workers than subnetworks, this strategy assigns subnetworks to workers modulo the num-
ber of subnetworks.

Conversely, when there are more subnetworks than workers, this round robin assigns subnetworks modulo the
number of workers. So certain workers may end up training more than one subnetwork.

This strategy gracefully handles scenarios when the number of subnetworks does not perfectly divide the number
of workers and vice-versa. It also supports different numbers of subnetworks at different iterations, and reloading
training with a resized cluster.

Parameters drop_remainder – Bool whether to drop remaining subnetworks that haven’t been
assigned to a worker in the remainder after perfect division of workers by the current itera-
tion’s num_subnetworks + 1. When True, each subnetwork worker will only train a single
subnetwork, and subnetworks that have not been assigned to assigned to a worker are dropped.
NOTE: This can result in subnetworks not being assigned to any worker when num_workers <
num_subnetworks + 1. When False, remaining subnetworks during the round-robin assign-
ment will be placed on workers that already have a subnetwork.

Returns A RoundRobinStrategy instance for the current cluster.

should_build_ensemble(num_subnetworks)
Whether to build the ensemble on the current worker.

Parameters num_subnetworks – Integer number of subnetworks to train in the current iter-
ation.

Returns Boolean whether to build the ensemble on the current worker.

should_build_subnetwork(num_subnetworks, subnetwork_index)
Whether to build the given subnetwork on the current worker.

Parameters

• num_subnetworks – Integer number of subnetworks to train in the current iteration.

• subnetwork_index – Integer index of the subnetwork in the list of the current itera-
tion’s subnetworks.

Returns Boolean whether to build the given subnetwork on the current worker.

should_train_subnetworks(num_subnetworks)
Whether to train subnetworks on the current worker.

Parameters num_subnetworks – Integer number of subnetworks to train in the current iter-
ation.

Returns Boolean whether to train subnetworks on the current worker.

subnetwork_devices(num_subnetworks, subnetwork_index)
A context for assigning subnetwork ops to devices.

12.3. RoundRobinStrategy 67

adanet Documentation, Release 0.8.0

68 Chapter 12. adanet.distributed

CHAPTER 13

Indices and tables

• genindex

• modindex

69

adanet Documentation, Release 0.8.0

70 Chapter 13. Indices and tables

Python Module Index

a
adanet, 21
adanet.distributed, 65
adanet.ensemble, 49
adanet.subnetwork, 59

71

adanet Documentation, Release 0.8.0

72 Python Module Index

Index

Symbols
__init__() (adanet.Evaluator method), 43

A
adanet (module), 21
adanet.distributed (module), 65
adanet.ensemble (module), 49
adanet.subnetwork (module), 59
add_mean_last_layer_predictions

(adanet.ensemble.MeanEnsembler attribute),
55

AllStrategy (class in adanet.ensemble), 58
audio() (adanet.Summary method), 44
AutoEnsembleEstimator (class in adanet), 21
AutoEnsembleSubestimator (class in adanet), 29

B
build_ensemble() (adanet.ensemble.ComplexityRegularizedEnsembler

method), 54
build_ensemble() (adanet.ensemble.Ensembler

method), 51
build_ensemble() (adanet.ensemble.MeanEnsembler

method), 55
build_subnetwork() (adanet.subnetwork.Builder

method), 60
build_subnetwork_report()

(adanet.subnetwork.Builder method), 61
build_subnetwork_train_op()

(adanet.subnetwork.Builder method), 61
build_train_op() (adanet.ensemble.ComplexityRegularizedEnsembler

method), 54
build_train_op() (adanet.ensemble.Ensembler

method), 52
build_train_op() (adanet.ensemble.MeanEnsembler

method), 56
Builder (class in adanet.subnetwork), 60

C
Candidate (class in adanet.ensemble), 58

ComplexityRegularized (class in
adanet.ensemble), 49

ComplexityRegularizedEnsembler (class in
adanet.ensemble), 52

config (adanet.distributed.PlacementStrategy at-
tribute), 65

count() (adanet.AutoEnsembleSubestimator method),
29

E
Ensemble (class in adanet.ensemble), 49
Ensembler (class in adanet.ensemble), 51
estimator (adanet.AutoEnsembleSubestimator at-

tribute), 29
Estimator (class in adanet), 29
eval_dir() (adanet.AutoEnsembleEstimator method),

24
eval_dir() (adanet.Estimator method), 32
eval_dir() (adanet.TPUEstimator method), 38
evaluate() (adanet.AutoEnsembleEstimator method),

24
evaluate() (adanet.Estimator method), 32
evaluate() (adanet.Evaluator method), 43
evaluate() (adanet.TPUEstimator method), 38
Evaluator (class in adanet), 43
Evaluator.Objective (class in adanet), 43
experimental_export_all_saved_models()

(adanet.AutoEnsembleEstimator method), 25
experimental_export_all_saved_models()

(adanet.Estimator method), 33
experimental_export_all_saved_models()

(adanet.TPUEstimator method), 39
export_saved_model()

(adanet.AutoEnsembleEstimator method),
26

export_saved_model() (adanet.Estimator
method), 34

export_saved_model() (adanet.TPUEstimator
method), 40

73

adanet Documentation, Release 0.8.0

export_savedmodel()
(adanet.AutoEnsembleEstimator method),
26

export_savedmodel() (adanet.Estimator method),
35

export_savedmodel() (adanet.TPUEstimator
method), 41

G
generate_candidates()

(adanet.subnetwork.Generator method),
62

generate_ensemble_candidates()
(adanet.ensemble.AllStrategy method), 58

generate_ensemble_candidates()
(adanet.ensemble.GrowStrategy method),
57

generate_ensemble_candidates()
(adanet.ensemble.SoloStrategy method),
57

generate_ensemble_candidates()
(adanet.ensemble.Strategy method), 57

Generator (class in adanet.subnetwork), 62
get_variable_names()

(adanet.AutoEnsembleEstimator method),
27

get_variable_names() (adanet.Estimator
method), 35

get_variable_names() (adanet.TPUEstimator
method), 41

get_variable_value()
(adanet.AutoEnsembleEstimator method),
27

get_variable_value() (adanet.Estimator
method), 35

get_variable_value() (adanet.TPUEstimator
method), 41

GrowStrategy (class in adanet.ensemble), 57

H
histogram() (adanet.Summary method), 44

I
image() (adanet.Summary method), 45
index() (adanet.AutoEnsembleSubestimator method),

29
input_fn (adanet.Evaluator attribute), 44
input_fn (adanet.ReportMaterializer attribute), 47

L
latest_checkpoint()

(adanet.AutoEnsembleEstimator method),
27

latest_checkpoint() (adanet.Estimator method),
35

latest_checkpoint() (adanet.TPUEstimator
method), 41

logits (adanet.ensemble.Ensemble attribute), 49
logits (adanet.ensemble.MeanEnsemble attribute), 50

M
materialize_subnetwork_reports()

(adanet.ReportMaterializer method), 47
MaterializedReport (class in adanet.subnetwork),

63
MeanEnsemble (class in adanet.ensemble), 50
MeanEnsembler (class in adanet.ensemble), 55
metric_name (adanet.Evaluator attribute), 44
MixtureWeightType (class in adanet.ensemble), 50
model_fn (adanet.AutoEnsembleEstimator attribute),

27
model_fn (adanet.Estimator attribute), 35
model_fn (adanet.TPUEstimator attribute), 41

N
name (adanet.ensemble.ComplexityRegularizedEnsembler

attribute), 55
name (adanet.ensemble.Ensembler attribute), 52
name (adanet.ensemble.MeanEnsembler attribute), 55,

56
name (adanet.subnetwork.Builder attribute), 62

O
objective_fn (adanet.Evaluator attribute), 44

P
PlacementStrategy (class in adanet.distributed), 65
predict() (adanet.AutoEnsembleEstimator method),

27
predict() (adanet.Estimator method), 35
predict() (adanet.TPUEstimator method), 41
predictions (adanet.ensemble.Ensemble attribute),

49
predictions (adanet.ensemble.MeanEnsemble

attribute), 50

R
ReplicationStrategy (class in adanet.distributed),

66
Report (class in adanet.subnetwork), 63
ReportMaterializer (class in adanet), 46
RoundRobinStrategy (class in adanet.distributed),

66

S
scalar() (adanet.Summary method), 46

74 Index

adanet Documentation, Release 0.8.0

should_build_ensemble()
(adanet.distributed.PlacementStrategy
method), 65

should_build_ensemble()
(adanet.distributed.ReplicationStrategy
method), 66

should_build_ensemble()
(adanet.distributed.RoundRobinStrategy
method), 67

should_build_subnetwork()
(adanet.distributed.PlacementStrategy
method), 65

should_build_subnetwork()
(adanet.distributed.ReplicationStrategy
method), 66

should_build_subnetwork()
(adanet.distributed.RoundRobinStrategy
method), 67

should_train_subnetworks()
(adanet.distributed.PlacementStrategy
method), 65

should_train_subnetworks()
(adanet.distributed.ReplicationStrategy
method), 66

should_train_subnetworks()
(adanet.distributed.RoundRobinStrategy
method), 67

SoloStrategy (class in adanet.ensemble), 57
steps (adanet.Evaluator attribute), 44
steps (adanet.ReportMaterializer attribute), 47
Strategy (class in adanet.ensemble), 57
Subnetwork (class in adanet.subnetwork), 59
subnetwork_devices()

(adanet.distributed.PlacementStrategy
method), 66

subnetwork_devices()
(adanet.distributed.ReplicationStrategy
method), 66

subnetwork_devices()
(adanet.distributed.RoundRobinStrategy
method), 67

subnetworks (adanet.ensemble.Ensemble attribute),
49

subnetworks (adanet.ensemble.MeanEnsemble
attribute), 50

Summary (class in adanet), 44

T
TPUEstimator (class in adanet), 37
train() (adanet.AutoEnsembleEstimator method), 28
train() (adanet.Estimator method), 36
train() (adanet.TPUEstimator method), 42
train_input_fn (adanet.AutoEnsembleSubestimator

attribute), 29

TrainOpSpec (class in adanet.ensemble), 56
TrainOpSpec (class in adanet.subnetwork), 60

W
WeightedSubnetwork (class in adanet.ensemble), 50

Index 75

	Overview
	Quick start
	Tutorials
	TensorBoard
	Distributed training
	TPU
	Algorithm
	Theory
	adanet
	adanet.ensemble
	adanet.subnetwork
	adanet.distributed
	Indices and tables
	Python Module Index
	Index

