

    
      
          
            
  
AdaNet documentation

AdaNet is a TensorFlow framework for fast and flexible AutoML with learning guarantees.
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Overview

AdaNet is an extended implementation of AdaNet: Adaptive Structural Learning
of Artificial Neural Networks by [Cortes et al., ICML
2017] [https://arxiv.org/abs/1607.01097], an algorithm for iteratively learning
both the structure and weights of a neural network as an ensemble of
subnetworks.


Ensembles of subnetworks

In AdaNet, ensembles are first-class objects. Every model you train will be
one form of an ensemble or another. An ensemble is composed of one or more
subnetworks whose outputs are combined via an ensembler.

[image: An ensemble is composed of subnetworks whose outputs are combined via an ensembler.]Terminology.

Ensembles are model-agnostic, meaning a subnetwork can be as complex as deep
neural network, or as simple as an if-statement. All that matters is that for a
given input tensor, the subnetworks’ outputs can be combined by the ensembler to
form a single prediction.



Adaptive architecture search
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Quick start

If you are already using
tf.estimator.Estimator [https://www.tensorflow.org/guide/estimators], the
fastest way to get up and running with AdaNet is to use the
adanet.AutoEnsembleEstimator [https://adanet.readthedocs.io/en/latest/adanet.html#autoensembleestimator].
This estimator will automatically convert a list of estimators into subnetworks,
and learn to ensemble them for you.


Import AdaNet

The first step is to import the adanet package:

import adanet







AutoEnsembleEstimator

Next you will want to define which estimators you want to ensemble. For example,
if you don’t know if the best model a linear model, or a neural network, or some
combination, then you can try using tf.estimator.LinearEstimator and
tf.estimator.DNNEstimator as subnetworks:

import adanet
import tensorflow as tf

# Define the model head for computing loss and evaluation metrics.
head = MultiClassHead(n_classes=10)

# Feature columns define how to process examples.
feature_columns = ...

# Learn to ensemble linear and neural network models.
estimator = adanet.AutoEnsembleEstimator(
    head=head,
    candidate_pool=lambda config: {
        "linear":
            tf.estimator.LinearEstimator(
                head=head,
                feature_columns=feature_columns,
                config=config,
                optimizer=...),
        "dnn":
            tf.estimator.DNNEstimator(
                head=head,
                feature_columns=feature_columns,
                config=config,
                optimizer=...,
                hidden_units=[1000, 500, 100])},
    max_iteration_steps=50)

estimator.train(input_fn=train_input_fn, steps=100)
metrics = estimator.evaluate(input_fn=eval_input_fn)
predictions = estimator.predict(input_fn=predict_input_fn)





The above code will train both the linear and dnn subnetworks in parallel,
and will average their predictions. After max_iteration_steps=100 steps, the
best subnetwork will compose the ensemble according to its performance on the
training set.



Ensemble strategies

The way AdaNet chooses which subnetworks to include in a candidate ensemble is
via ensemble strategies.


Grow strategy

The default ensemble strategy is adanet.ensemble.GrowStrategy which will only
select the subnetwork that most improved the ensemble’s performance. The
remaining subnetworks will be pruned from the graph.



All strategy

Suppose instead of only selecting the single best subnetwork, you want to
ensemble all of the subnetworks, regardless of their individual performance.
You can pass an instance of the adanet.ensemble.AllStrategy to the
adanet.AutoEnsembleEstimator constructor:

estimator = adanet.AutoEnsembleEstimator(
    [...]
    ensemble_strategies=[adanet.ensemble.AllStrategy()]
    candidate_pool={
        "linear": ...,
        "dnn": ...,
    },
    [...])








Tutorials

To play with AdaNet in Colab notebooks, and learn about more advanced features
like customizing AdaNet and training on TPU, see our
tutorials section.
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Tutorials


Notebooks

Play with AdaNet in our interactive
Colab notebooks available on GitHub [https://github.com/tensorflow/adanet/tree/master/adanet/examples/tutorials].



Misc

To learn more, please visit our quick start guide.

For more about the underlying algorithm, see the algorithm and
theory pages.
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TensorBoard

TensorBoard [https://www.tensorflow.org/guide/summaries_and_tensorboard] is
AdaNet’s UI.

From TensorBoard, you can vizualize the performance of candidate ensembles and
individual subnetworks over time, visualize their architectures, and monitor
statics.
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Distributed training

AdaNet uses the same distributed training model as tf.estimator.Estimator.

For training TensorFlow estimators on Google Cloud ML Engine, please see
this guide [https://cloud.google.com/blog/products/gcp/easy-distributed-training-with-tensorflow-using-tfestimatortrain-and-evaluate-on-cloud-ml-engine].


Placement Strategies

Given a cluster of worker and parameter servers, AdaNet will manage distributed
training automatically. When creating an AdaNet Estimator, you can specify the
adanet.distributed.PlacementStrategy to decide which subnetworks each worker
will be responsible for training.


Replication Strategy

The default distributed training strategy is the same as the default
tf.estimator.Estimator model: each worker will create the full training graph,
including all subnetworks and ensembles, and optimize all the trainable
parameters. Each variable will be randomly allocated to a parameter server to
minimize bottlenecks in workers fetching them. Worker’s updates will be sent to
the parameter servers which apply the updates to their managed variables.

[image: _images/replication_strategy.svg]Replication strategy

To learn more, see the implementation at
adanet.distributed.ReplicationStrategy [https://adanet.readthedocs.io/en/latest/adanet.distributed.html#replicationstrategy].



Round Robin Stategy (experimental)

A strategy that scales better than the Replication Strategy is the experimental
Round Robin Stategy. Instead of replicating the same graph on each worker,
AdaNet will round robin assign workers to train a single subnetwork.

[image: _images/round_robin.svg]Round robin strategy

To learn more, see the implementation at
adanet.distributed.RoundRobinStrategy [https://adanet.readthedocs.io/en/latest/adanet.distributed.html#roundrobinstrategy].
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TPU

AdaNet officially supports TPU training, evaluation, and prediction via the
adanet.TPUEstimator [https://adanet.readthedocs.io/en/latest/adanet.html#tpuestimator].

To get started, see our
Colab notebook on TPU [https://colab.research.google.com/github/tensorflow/adanet/blob/master/adanet/examples/tutorials/adanet_tpu.ipynb].
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Algorithm


Neural architecture search

AutoML is a family of techniques and algorithms seeking to automatically solve
supervised learning tasks. Recently, researchers in AutoML have investigated
whether we can automate learning the structure of a neural network for a given
dataset, automating a task that requires significant domain expertise. This
subdomain known as neural architecture search has seen advances in the
state-of-the-art using reinforcement learning
[Zoph et al. ‘17 [https://arxiv.org/abs/1707.07012]], evolutionary strategies
[Real et al., ‘17 [https://arxiv.org/abs/1802.01548]], and gradient-based
methods [Liu et al., ‘18 [https://arxiv.org/abs/1806.09055]] to learn neural
network substructures. However, in these papers, the high-level structure of the
network generally remains user defined.

[image: Two candidate ensembles.]Two candidate ensembles


This illustration shows the algorithm’s incremental construction of a
fully-connected neural network. The input layer is indicated in blue, the
output layer in green. Units in the yellow block are added at the first
iteration while units in purple are added at the second iteration. Two
candidate extensions of the architecture are considered at the third iteration
(shown in red): (a) a two-layer extension; (b) a three-layer extension. Here,
a line between two blocks of units indicates that these blocks are
fully-connected.






Neural networks are ensembles

Ensembles of neural networks have shown remarkable performance in domains such
as natural language processing, image recognition, and many others. The two
composing techniques are interesting in their own rights: ensemble techniques
have a rich history and theoretical understanding, while neural networks provide
a general framework for solving complex tasks across many domains at scale.

Coincidentally, an ensemble of neural networks whose outputs are linearly
combined is also a neural network. With that definition in mind, we seek to
answer the question: Can we learn a neural network architecture as an ensemble
of subnetworks? And can we adaptively learn such an ensemble with fewer
trainable parameters and that performs better than any single neural network
trained end-to-end?



Adaptive architecture search

Our algorithm for performing adaptive neural architecture search is AdaNet
[Cortes et al., ICML ‘17 [https://arxiv.org/abs/1607.01097]], which iteratively
grows an ensemble of neural networks while providing learning guarantees. It is
adaptive because at each iteration the candidate subnetworks are generated and
trained based on the current state of the neural network.

We show this algorithm can in fact learn a neural network (ensemble) that
achieves state of the art results across several datasets. We also show how this
algorithm is complementary with the neural architecture search research
mentioned earlier, as it learns to combine these substructures in a principled
manner to achieve these results.



The AdaNet algorithm

The AdaNet algorithm works as follows: a generator iteratively creates a set of
candidate base learners to consider including in the final ensemble. How these
base learners are trained is left completely up to the user, but generally they
are trained to optimize some common loss function such as cross-entropy loss or
mean squared error. At every iteration, the trained base learners then evaluated
on their ability to minimize the AdaNet objective $F$, and the best one is
included in the final ensemble.

$$\begin{aligned} &F\left ( w \right ) = \frac{1}{m} \sum_{i=0}^{N-1} \Phi \left (\sum_{j=0}^{N-1}w_jh_j(x_i), y_i  \right ) + \sum_{j=0}^{N-1} \left (\lambda r(h_j) + \beta   \right )\left | w_j \right |\ &\text{where }w_j \text{ is the weight of model } j \text{’s contribution to the ensemble,}\ &h_j \text{ is model } j,\ &\Phi \text{ is the loss function,}\ &r(h_j) \text{ is model } j\text{’s complexity, and}\ &\lambda \text{ and } \beta \text{ are tunable hyperparameters.} \end{aligned}$$

For every iteration after the first, the generator can generate neural networks
based on the current state of the ensemble. This allows AdaNet to create complex
structures or use advanced techniques for training candidates so that they will
most significantly improve the ensemble. For an optimization example, knowledge
distillation [Hinton et al., ‘15 [https://arxiv.org/abs/1503.02531]] is a
technique that uses a teacher network’s logits as the ground-truth when
computing the loss of a trainable student network, and is shown to produce
students that perform better than a identical network trained without. At every
iteration, we can use the current ensemble as a teacher network and the
candidates as students, to obtain base learners that perform better, and
significantly improve the performance of the final ensemble.



More information


	A step by step walkthrough of the AdaNet algorithm [https://docs.google.com/presentation/d/19NL1nI-MpwysxDsjSNmHbzLnr4NGacw6a8YGo88VA2Y/present?slide=id.g3d1c8865a3_0_0]
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Theory


Focus on generalization

Generalization error is what we really want to minimize when we train a model.
Most algorithms minimize generalization error indirectly by minimizing a loss
function that consists of a training loss term and additional penalty terms to
discourage the models away from acquiring properties that are associated with
overfitting (e.g., L1 weight norms, L2 weight norms).



Rigorous trade-offs between training loss and complexity

How do we know what model properties to avoid? Currently, these usually come
from practical experience or industry-accepted best practices. While this has
worked well so far, we would like to minimize the generalization error in a more
principled way.

AdaNet’s approach is to minimize a theoretical upper bound on generalization
error, proven in the DeepBoost paper
[Cortes et al. ‘14 [https://ai.google/research/pubs/pub42856]]:

$$R(f) \leq \widehat{R}{S, \rho}(f) + \frac{4}{\rho} \sum{k = 1}^{l} \big | \mathbf{w}  _k \big |_1 \mathfrak{R}_m(\widetilde {\cal H}_k) + \widetilde O\Big(\frac{1}{\rho} \sqrt{\frac{\log l}{m}}\Big)$$

This generalization bound allows us to make an apples-to-apples comparison
between the complexities of models in an ensemble and the overall training
loss – allowing us to design an algorithm that makes this trade-off in a
rigorous manner.



Other key insights


	Convex combinations can’t hurt. Given a set of already-performant and
uncorrelated base learners, one can take a linear combination of them with
weights that sum to 1 to obtain an ensemble that outperforms the best among
those base learners. But even though this ensemble has more trainable
parameters, it does not have a greater tendency to overfit.


	De-emphasize rather than discourage complex models. If one combines a
few base learners that are each selected from a different function class
(e.g., neural networks of different depths and widths), one might expect the
tendency to overfit to be similar to that of an ensemble comprised of base
learners selected from the union of all the function classes. Remarkably,
the DeepBoost bound shows that we can actually do better, as long as the
final ensemble is a weighted average of model logits where each base
learner’s weight is inversely proportional to the Rademacher complexity of
its function class, and all the weights in the logits layer sum to 1.
Additionally, at training time, we don’t have to discourage the trainer from
learning complex models – it is only when we consider the how much the
model should contribute to the ensemble do we take the complexity of the
model into account.


	Complexity is not just about the weights. The Rademacher complexity of a
neural network does not simply depend on the number of weights or the norm
of its weights – it also depends on the number of layers and how they are
connected. An upper bound on the Rademacher complexity of neural networks
can be expressed recursively
[Cortes et al. ‘17 [https://arxiv.org/abs/1607.01097]], and applies to both
fully-connected and convolutional neural networks, thus allowing us to
compute the complexity upper-bounds of almost any neural network that can be
expressed as a directed-acyclic graph of layers, including unconventional
architectures such as those found by NASNet
[Zoph et al. ‘17 [https://arxiv.org/abs/1707.07012]]. Rademacher complexity
is also data-dependent, which means that the same neural network
architecture can have different generalization behavior on different data
sets.






AdaNet loss function

Using these insights, AdaNet seeks to minimize the generalization error more
directly using this loss function:

$$\begin{align*} &F\left ( w \right ) = \frac{1}{m} \sum_{i=1}^{m} \Phi \left (\sum_{j=1}^{N}w_jh_j(x_i), y_i  \right ) + \sum_{j=1}^{N} \left (\lambda r(h_j) + \beta   \right )\left | w_j \right |\ &\text{where }w_j \text{ is the weight of model } j \text{’s contribution to the ensemble,}\ &h_j \text{ is model } j,\ &\Phi \text{ is the loss function,}\ &r(h_j) \text{ is model } j\text{’s complexity, and}\ &\lambda \text{ and } \beta \text{ are tunable hyperparameters.} \end{align*}$$

By minimizing this loss function, AdaNet is able to combine base learners of
different complexities in a way that generalizes better than one might expect
from the total size of the base learners.
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adanet

AdaNet: Fast and flexible AutoML with learning guarantees.


Estimators

High-level APIs for training, evaluating, predicting, and serving AdaNet model.


AutoEnsembleEstimator


	
class adanet.AutoEnsembleEstimator(head, candidate_pool, max_iteration_steps, ensemblers=None, ensemble_strategies=None, logits_fn=None, last_layer_fn=None, evaluator=None, metric_fn=None, force_grow=False, adanet_loss_decay=0.9, worker_wait_timeout_secs=7200, model_dir=None, config=None, debug=False, enable_ensemble_summaries=True, enable_subnetwork_summaries=True, global_step_combiner_fn=<function reduce_mean>, max_iterations=None, replay_config=None, **kwargs)

	Bases: adanet.core.estimator.Estimator

A tf.estimator.Estimator that learns to ensemble models.

Specifically, it learns to ensemble models from a candidate pool using the
Adanet algorithm.

# A simple example of learning to ensemble linear and neural network
# models.

import adanet
import tensorflow as tf

feature_columns = ...

head = MultiClassHead(n_classes=10)

# Learn to ensemble linear and DNN models.
estimator = adanet.AutoEnsembleEstimator(
    head=head,
    candidate_pool=lambda config: {
        "linear":
            tf.estimator.LinearEstimator(
                head=head,
                feature_columns=feature_columns,
                config=config,
                optimizer=...),
        "dnn":
            tf.estimator.DNNEstimator(
                head=head,
                feature_columns=feature_columns,
                config=config,
                optimizer=...,
                hidden_units=[1000, 500, 100])},
    max_iteration_steps=50)

# Input builders
def input_fn_train:
  # Returns tf.data.Dataset of (x, y) tuple where y represents label's
  # class index.
  pass
def input_fn_eval:
  # Returns tf.data.Dataset of (x, y) tuple where y represents label's
  # class index.
  pass
def input_fn_predict:
  # Returns tf.data.Dataset of (x, None) tuple.
  pass
estimator.train(input_fn=input_fn_train, steps=100)
metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10)
predictions = estimator.predict(input_fn=input_fn_predict)





Or to train candidate subestimators on different training data subsets:

train_data_files = [...]

# Learn to ensemble linear and DNN models.
estimator = adanet.AutoEnsembleEstimator(
    head=head,
    candidate_pool=lambda config: {
        "linear":
            adanet.AutoEnsembleSubestimator(
                tf.estimator.LinearEstimator(
                    head=head,
                    feature_columns=feature_columns,
                    config=config,
                    optimizer=...),
                make_train_input_fn(train_data_files[:-1])),
        "dnn":
            adanet.AutoEnsembleSubestimator(
                tf.estimator.DNNEstimator(
                    head=head,
                    feature_columns=feature_columns,
                    config=config,
                    optimizer=...,
                    hidden_units=[1000, 500, 100]),
                make_train_input_fn(train_data_files[0:]))},
    max_iteration_steps=50)

estimator.train(input_fn=make_train_input_fn(train_data_files), steps=100)






	Parameters

	
	head – A tf.contrib.estimator.Head instance for computing loss and
evaluation metrics for every candidate.


	candidate_pool – List of tf.estimator.Estimator and
AutoEnsembleSubestimator objects, or dict of string name to
tf.estimator.Estimator and AutoEnsembleSubestimator
objects that are candidate subestimators to ensemble at each iteration.
The order does not directly affect which candidates will be included in
the final ensemble, but will affect the name of the candidate. When using
a dict, the string key becomes the candidate subestimator’s name.
Alternatively, this argument can be a function that takes a config
argument and returns the aforementioned values in case the
objects need to be re-instantiated at each adanet iteration.


	max_iteration_steps – Total number of steps for which to train candidates per
iteration. If OutOfRange or StopIteration occurs in the middle,
training stops before max_iteration_steps steps.


	logits_fn – A function for fetching the subnetwork logits from a
tf.estimator.EstimatorSpec, which should obey the following
signature:



	Args: Can only have following argument:
- estimator_spec: The candidate’s tf.estimator.EstimatorSpec.


	Returns: Logits tf.Tensor or dict of string to logits
tf.Tensor (for multi-head) for the candidate subnetwork
extracted from the given estimator_spec. When None, it will
default to returning estimator_spec.predictions when they are a
tf.Tensor or the tf.Tensor for the key ‘logits’ when
they are a dict of string to tf.Tensor.










	last_layer_fn – An optional function for fetching the subnetwork last_layer
from a tf.estimator.EstimatorSpec, which should obey the
following signature:



	Args: Can only have following argument:
- estimator_spec: The candidate’s tf.estimator.EstimatorSpec.


	Returns: Last layer tf.Tensor or dict of string to last
layer tf.Tensor (for multi-head) for the candidate subnetwork
extracted from the given estimator_spec. The last_layer can be used
for learning ensembles or exporting them as embeddings.







When None, it will default to using the logits as the last_layer.




	ensemblers – See adanet.Estimator.


	ensemble_strategies – See adanet.Estimator.


	evaluator – See adanet.Estimator.


	metric_fn – See adanet.Estimator.


	force_grow – See adanet.Estimator.


	adanet_loss_decay – See adanet.Estimator.


	worker_wait_timeout_secs – See adanet.Estimator.


	model_dir – See adanet.Estimator.


	config – See adanet.Estimator.


	debug – See adanet.Estimator.


	enable_ensemble_summaries – See adanet.Estimator.


	enable_subnetwork_summaries – See adanet.Estimator.


	global_step_combiner_fn – See adanet.Estimator.


	max_iterations – See adanet.Estimator.


	replay_config – See adanet.Estimator.


	**kwargs – Extra keyword args passed to the parent.






	Returns

	An adanet.AutoEnsembleEstimator instance.



	Raises

	ValueError – If any of the candidates in candidate_pool are not
tf.estimator.Estimator instances.






	
deprecation = <module 'tensorflow.python.util.deprecation' from '/home/docs/checkouts/readthedocs.org/user_builds/adanet/envs/latest/lib/python3.7/site-packages/tensorflow/python/util/deprecation.py'>

	




	
eval_dir(name=None)

	Shows the directory name where evaluation metrics are dumped.


	Parameters

	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.



	Returns

	A string which is the path of directory contains evaluation metrics.










	
evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)

	Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data.
Evaluates until:
- steps batches are processed, or
- input_fn raises an end-of-input exception (tf.errors.OutOfRangeError
or StopIteration).


	Parameters

	
	input_fn – A function that constructs the input data for evaluation. See
[Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:
* A tf.data.Dataset object: Outputs of Dataset object must be a


tuple (features, labels) with same constraints as below.





	A tuple (features, labels): Where features is a tf.Tensor or a
dictionary of string feature name to Tensor and labels is a
Tensor or a dictionary of string label name to Tensor. Both
features and labels are consumed by model_fn. They should
satisfy the expectation of model_fn from inputs.







	steps – Number of steps for which to evaluate model. If None, evaluates
until input_fn raises an end-of-input exception.


	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the evaluation call.


	checkpoint_path – Path of a specific checkpoint to evaluate. If None, the
latest checkpoint in model_dir is used.  If there are no checkpoints
in model_dir, evaluation is run with newly initialized Variables
instead of ones restored from checkpoint.


	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.






	Returns

	A dict containing the evaluation metrics specified in model_fn keyed by
name, as well as an entry global_step which contains the value of the
global step for which this evaluation was performed. For canned
estimators, the dict contains the loss (mean loss per mini-batch) and
the average_loss (mean loss per sample). Canned classifiers also return
the accuracy. Canned regressors also return the label/mean and the
prediction/mean.



	Raises

	ValueError – If steps <= 0.










	
experimental_export_all_saved_models(export_dir_base, input_receiver_fn_map, hooks=None, assets_extra=None, as_text=False, checkpoint_path=None)

	Exports a SavedModel with tf.MetaGraphDefs for each requested mode.

For each mode passed in via the input_receiver_fn_map,
this method builds a new graph by calling the input_receiver_fn to obtain
feature and label Tensor`s. Next, this method calls the `Estimator’s
model_fn in the passed mode to generate the model graph based on
those features and labels, and restores the given checkpoint
(or, lacking that, the most recent checkpoint) into the graph.
Only one of the modes is used for saving variables to the SavedModel
(order of preference: tf.estimator.ModeKeys.TRAIN,
tf.estimator.ModeKeys.EVAL, then
tf.estimator.ModeKeys.PREDICT), such that up to three
tf.MetaGraphDefs are saved with a single set of variables in a single
SavedModel directory.

For the variables and tf.MetaGraphDefs, a timestamped export directory
below export_dir_base, and writes a SavedModel into it containing the
tf.MetaGraphDef for the given mode and its associated signatures.

For prediction, the exported MetaGraphDef will provide one SignatureDef
for each element of the export_outputs dict returned from the model_fn,
named using the same keys.  One of these keys is always
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
indicating which signature will be served when a serving request does not
specify one. For each signature, the outputs are provided by the
corresponding tf.estimator.export.ExportOutput`s, and the inputs are always
the input receivers provided by the `serving_input_receiver_fn.

For training and evaluation, the train_op is stored in an extra
collection, and loss, metrics, and predictions are included in a
SignatureDef for the mode in question.

Extra assets may be written into the SavedModel via the assets_extra
argument.  This should be a dict, where each key gives a destination path
(including the filename) relative to the assets.extra directory.  The
corresponding value gives the full path of the source file to be copied.
For example, the simple case of copying a single file without renaming it
is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.


	Parameters

	
	export_dir_base – A string containing a directory in which to create
timestamped subdirectories containing exported `SavedModel`s.


	input_receiver_fn_map – dict of tf.estimator.ModeKeys to
input_receiver_fn mappings, where the input_receiver_fn is a
function that takes no arguments and returns the appropriate subclass of
InputReceiver.


	assets_extra – A dict specifying how to populate the assets.extra directory
within the exported SavedModel, or None if no extra assets are
needed.


	as_text – whether to write the SavedModel proto in text format.


	checkpoint_path – The checkpoint path to export.  If None (the default),
the most recent checkpoint found within the model directory is chosen.






	Returns

	The path to the exported directory as a bytes object.



	Raises

	ValueError – if any input_receiver_fn is None, no export_outputs
are provided, or no checkpoint can be found.










	
export_saved_model(export_dir_base, serving_input_receiver_fn, hooks=None, assets_extra=None, as_text=False, checkpoint_path=None, experimental_mode='infer')

	Exports inference graph as a SavedModel into the given dir.

For a detailed guide on SavedModel, see
[Using the SavedModel format]
(https://tensorflow.org/guide/saved_model#savedmodels_from_estimators).

This method builds a new graph by first calling the
serving_input_receiver_fn to obtain feature Tensor`s, and then calling
this `Estimator’s model_fn to generate the model graph based on those
features. It restores the given checkpoint (or, lacking that, the most
recent checkpoint) into this graph in a fresh session.  Finally it creates
a timestamped export directory below the given export_dir_base, and writes
a SavedModel into it containing a single tf.MetaGraphDef saved from this
session.

The exported MetaGraphDef will provide one SignatureDef for each
element of the export_outputs dict returned from the model_fn, named
using the same keys.  One of these keys is always
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
indicating which signature will be served when a serving request does not
specify one. For each signature, the outputs are provided by the
corresponding tf.estimator.export.ExportOutput`s, and the inputs are always
the input receivers provided by the `serving_input_receiver_fn.

Extra assets may be written into the SavedModel via the assets_extra
argument.  This should be a dict, where each key gives a destination path
(including the filename) relative to the assets.extra directory.  The
corresponding value gives the full path of the source file to be copied.
For example, the simple case of copying a single file without renaming it
is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

The experimental_mode parameter can be used to export a single
train/eval/predict graph as a SavedModel.
See experimental_export_all_saved_models for full docs.


	Parameters

	
	export_dir_base – A string containing a directory in which to create
timestamped subdirectories containing exported `SavedModel`s.


	serving_input_receiver_fn – A function that takes no argument and returns a
tf.estimator.export.ServingInputReceiver or
tf.estimator.export.TensorServingInputReceiver.


	assets_extra – A dict specifying how to populate the assets.extra directory
within the exported SavedModel, or None if no extra assets are
needed.


	as_text – whether to write the SavedModel proto in text format.


	checkpoint_path – The checkpoint path to export.  If None (the default),
the most recent checkpoint found within the model directory is chosen.


	experimental_mode – tf.estimator.ModeKeys value indicating with mode will
be exported. Note that this feature is experimental.






	Returns

	The path to the exported directory as a bytes object.



	Raises

	
	ValueError – if no serving_input_receiver_fn is provided, no


	export_outputs are provided, or no checkpoint can be found.













	
export_savedmodel(export_dir_base, serving_input_receiver_fn, hooks=None, assets_extra=None, as_text=False, checkpoint_path=None, strip_default_attrs=False)

	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
This function has been renamed, use export_saved_model instead.






	
get_variable_names()

	Returns list of all variable names in this model.


	Returns

	List of names.



	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.










	
get_variable_value(name)

	Returns value of the variable given by name.


	Parameters

	name – string or a list of string, name of the tensor.



	Returns

	Numpy array - value of the tensor.



	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.










	
latest_checkpoint()

	Finds the filename of the latest saved checkpoint file in model_dir.


	Returns

	The full path to the latest checkpoint or None if no checkpoint was
found.










	
model_fn

	Returns the model_fn which is bound to self.params.


	Returns

	def model_fn(features, labels, mode, config)



	Return type

	The model_fn with following signature










	
predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None, yield_single_examples=True)

	Yields predictions for given features.

Please note that interleaving two predict outputs does not work. See:
[issue/20506](
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517)


	Parameters

	
	input_fn – A function that constructs the features. Prediction continues
until input_fn raises an end-of-input exception
(tf.errors.OutOfRangeError or StopIteration). See [Premade
Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:
* tf.data.Dataset object – Outputs of Dataset object must have


same constraints as below.





	features – A tf.Tensor or a dictionary of string feature name to
Tensor. features are consumed by model_fn. They should satisfy
the expectation of model_fn from inputs.


	A tuple, in which case
the first item is extracted as features.







	predict_keys – list of str, name of the keys to predict. It is used if
the tf.estimator.EstimatorSpec.predictions is a dict. If
predict_keys is used then rest of the predictions will be filtered
from the dictionary. If None, returns all.


	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the prediction call.


	checkpoint_path – Path of a specific checkpoint to predict. If None, the
latest checkpoint in model_dir is used.  If there are no checkpoints
in model_dir, prediction is run with newly initialized Variables
instead of ones restored from checkpoint.


	yield_single_examples – If False, yields the whole batch as returned by
the model_fn instead of decomposing the batch into individual
elements. This is useful if model_fn returns some tensors whose first
dimension is not equal to the batch size.






	Yields

	Evaluated values of predictions tensors.



	Raises

	
	ValueError – If batch length of predictions is not the same and
yield_single_examples is True.


	ValueError – If there is a conflict between predict_keys and
predictions. For example if predict_keys is not None but
tf.estimator.EstimatorSpec.predictions is not a dict.













	
train(input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)

	Trains a model given training data input_fn.

NOTE: If a given input_fn raises an OutOfRangeError, then all of
training will exit. The best practice is to make the training dataset repeat
forever, in order to perform model search for more than one iteration.


	Parameters

	
	input_fn – A function that provides input data for training as minibatches.
See [Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:



	A tf.data.Dataset object: Outputs of Dataset object must
be a tuple (features, labels) with same constraints as below.


	A tuple (features, labels): Where features is a
tf.Tensor or a dictionary of string feature name to
Tensor and labels is a Tensor or a dictionary of string
label name to Tensor. Both features and labels are consumed by
model_fn. They should satisfy the expectation of model_fn from
inputs.










	hooks – List of tf.train.SessionRunHook subclass instances. Used
for callbacks inside the training loop.


	steps – Number of steps for which to train the model. If None,
train forever or train until input_fn generates the
tf.errors.OutOfRange error or StopIteration exception.
steps works incrementally. If you call two times train(steps=10)
then training occurs in total 20 steps. If OutOfRange or
StopIteration occurs in the middle, training stops before 20
steps. If you don’t want to have incremental behavior please set
max_steps instead. If set, max_steps must be None.


	max_steps – Number of total steps for which to train model. If
None, train forever or train until input_fn generates the
tf.errors.OutOfRange error or StopIteration exception.
If set, steps must be None. If OutOfRange or
StopIteration occurs in the middle, training stops before
max_steps steps. Two calls to train(steps=100) means 200 training
iterations. On the other hand, two calls to train(max_steps=100)
means that the second call will not do any iteration since first call
did all 100 steps.


	saving_listeners – list of CheckpointSaverListener objects. Used
for callbacks that run immediately before or after checkpoint savings.






	Returns

	self, for chaining.



	Raises

	
	ValueError – If both steps and max_steps are not None.


	ValueError – If either steps or max_steps <= 0.


















AutoEnsembleSubestimator


	
class adanet.AutoEnsembleSubestimator

	Bases: adanet.autoensemble.common.AutoEnsembleSubestimator

A subestimator to train and consider for ensembling.


	Parameters

	
	estimator – A tf.estimator.Estimator or tf.estimator.tpu.TPUEstimator
instance to consider for ensembling.


	train_input_fn – 
	A function that provides input data for training as

	minibatches. It can be used to implement ensemble methods like bootstrap
aggregating (a.k.a bagging) where each subnetwork trains on different
slices of the training data. The function should construct and return one
of the following:



	A tf.data.Dataset object: Outputs of Dataset object must be a tuple
(features, labels) with same constraints as below. NOTE: A Dataset


must return at least two batches before hitting the end-of-input,
otherwise all of training terminates.




TODO: Figure out how to handle single-batch datasets.



	A tuple (features, labels): Where features is a tf.Tensor or a
dictionary of string feature name to Tensor and labels is a
Tensor or a dictionary of string label name to Tensor. Both
features and labels are consumed by estimator#model_fn. They
should satisfy the expectation of estimator#model_fn from inputs.









	prediction_only: If set to True, only runs the subestimator in prediction

	mode.












	Returns

	An AutoEnsembleSubestimator instance to be auto-ensembled.






	
count()

	Return number of occurrences of value.






	
estimator

	Alias for field number 0






	
index()

	Return first index of value.

Raises ValueError if the value is not present.






	
prediction_only

	Alias for field number 2






	
train_input_fn

	Alias for field number 1











AutoEnsembleTPUEstimator


	
class adanet.AutoEnsembleTPUEstimator(head, candidate_pool, max_iteration_steps, ensemblers=None, ensemble_strategies=None, logits_fn=None, last_layer_fn=None, evaluator=None, metric_fn=None, force_grow=False, adanet_loss_decay=0.9, model_dir=None, config=None, use_tpu=True, eval_on_tpu=True, export_to_tpu=True, train_batch_size=None, eval_batch_size=None, predict_batch_size=None, embedding_config_spec=None, debug=False, enable_ensemble_summaries=True, enable_subnetwork_summaries=True, global_step_combiner_fn=<function reduce_mean>, max_iterations=None, replay_config=None, **kwargs)

	Bases: adanet.core.tpu_estimator.TPUEstimator

A tf.estimator.tpu.TPUEstimator that learns to ensemble models.

Specifically, it learns to ensemble models from a candidate pool using the
Adanet algorithm.

This estimator is capable of training and evaluating on TPU. It can ensemble
both tf.estimator.tpu.TPUEstimator candidates as well as regular
tf.estimator.Estimator candidates, as long as these candidates are
TPU compatible.


	Note the following restrictions compared to AutoEnsembleEstimator:

	
	All candidates must wrap their optimizers with a
tf.tpu.CrossShardOptimizer.


	The input_fn must expose a params argument.


	The model_fn of tf.estimator.tpu.TPUEstimator candidates must
also expose a params argument.








WARNING: This Estimator is a work in progress and the API could change at any
moment. May not support all AutoEnsembleEstimator features.


# A simple example of learning to ensemble linear and neural network
# models on TPU.

import adanet
import tensorflow as tf

feature_columns = ...

head = MultiClassHead(n_classes=10)

# Learn to ensemble linear and DNN models.
estimator = adanet.AutoEnsembleTPUEstimator(
    head=head,
    candidate_pool=lambda config: {
        "linear":
            tf.estimator.LinearEstimator(
                head=head,
                feature_columns=feature_columns,
                config=config,
                optimizer=tf.tpu.CrossShardOptimizer(...)),
        "dnn":
            tf.estimator.DNNEstimator(
                head=head,
                feature_columns=feature_columns,
                config=config,
                optimizer=tf.tpu.CrossShardOptimzier(...),
                hidden_units=[1000, 500, 100])},
    max_iteration_steps=50)

# Input builders
def input_fn_train(params):
  # Returns tf.data.Dataset of (x, y) tuple where y represents label's
  # class index.
  pass
def input_fn_eval(params):
  # Returns tf.data.Dataset of (x, y) tuple where y represents label's
  # class index.
  pass
def input_fn_predict():
  # Returns tf.data.Dataset of (x, None) tuple.
  pass
estimator.train(input_fn=input_fn_train, steps=100)
metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10)
predictions = estimator.predict(input_fn=input_fn_predict)









	Parameters

	
	head – A tf.contrib.estimator.Head instance for computing loss and
evaluation metrics for every candidate.


	candidate_pool – List of tf.estimator.tpu.TPUEstimator and
AutoEnsembleSubestimator objects, or dict of string name to
tf.estimator.tpu.TPUEstimator and
AutoEnsembleSubestimator objects that are candidate subestimators
to ensemble at each iteration. The order does not directly affect which
candidates will be included in the final ensemble, but will affect the
name of the candidate. When using a dict, the string key becomes the
candidate subestimator’s name. Alternatively, this argument can be a
function that takes a config argument and returns the aforementioned
values in case the objects need to be re-instantiated at each adanet
iteration.


	max_iteration_steps – See adanet.Estimator.


	logits_fn – A function for fetching the subnetwork logits from a
tf.estimator.EstimatorSpec, which should obey the following
signature:



	Args: Can only have following argument:
- estimator_spec: The candidate’s tf.estimator.EstimatorSpec.


	Returns: Logits tf.Tensor or dict of string to logits
tf.Tensor (for multi-head) for the candidate subnetwork
extracted from the given estimator_spec. When None, it will
default to returning estimator_spec.predictions when they are a
tf.Tensor or the tf.Tensor for the key ‘logits’ when
they are a dict of string to tf.Tensor.










	last_layer_fn – An optional function for fetching the subnetwork last_layer
from a tf.estimator.EstimatorSpec, which should obey the
following signature:



	Args: Can only have following argument:
- estimator_spec: The candidate’s tf.estimator.EstimatorSpec.


	Returns: Last layer tf.Tensor or dict of string to last
layer tf.Tensor (for multi-head) for the candidate subnetwork
extracted from the given estimator_spec. The last_layer can be used
for learning ensembles or exporting them as embeddings.







When None, it will default to using the logits as the last_layer.




	ensemblers – See adanet.Estimator.


	ensemble_strategies – See adanet.Estimator.


	evaluator – See adanet.Estimator.


	metric_fn – See adanet.Estimator.


	force_grow – See adanet.Estimator.


	adanet_loss_decay – See adanet.Estimator.


	model_dir – See adanet.Estimator.


	config – See adanet.Estimator.


	use_tpu – See adanet.Estimator.


	eval_on_tpu – See adanet.Estimator.


	export_to_tpu – See adanet.Estimator.


	train_batch_size – See adanet.Estimator.


	eval_batch_size – See adanet.Estimator.


	embedding_config_spec – See adanet.Estimator.


	debug – See adanet.Estimator.


	enable_ensemble_summaries – See adanet.Estimator.


	enable_subnetwork_summaries – See adanet.Estimator.


	global_step_combiner_fn – See adanet.Estimator.


	max_iterations – See adanet.Estimator.


	replay_config – See adanet.Estimator.


	**kwargs – Extra keyword args passed to the parent.






	Returns

	An adanet.AutoEnsembleTPUEstimator instance.



	Raises

	ValueError – If any of the candidates in candidate_pool are not
tf.estimator.Estimator instances.






	
deprecation = <module 'tensorflow.python.util.deprecation' from '/home/docs/checkouts/readthedocs.org/user_builds/adanet/envs/latest/lib/python3.7/site-packages/tensorflow/python/util/deprecation.py'>

	




	
eval_dir(name=None)

	Shows the directory name where evaluation metrics are dumped.


	Parameters

	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.



	Returns

	A string which is the path of directory contains evaluation metrics.










	
evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)

	Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data.
Evaluates until:
- steps batches are processed, or
- input_fn raises an end-of-input exception (tf.errors.OutOfRangeError
or StopIteration).


	Parameters

	
	input_fn – A function that constructs the input data for evaluation. See
[Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:
* A tf.data.Dataset object: Outputs of Dataset object must be a


tuple (features, labels) with same constraints as below.





	A tuple (features, labels): Where features is a tf.Tensor or a
dictionary of string feature name to Tensor and labels is a
Tensor or a dictionary of string label name to Tensor. Both
features and labels are consumed by model_fn. They should
satisfy the expectation of model_fn from inputs.







	steps – Number of steps for which to evaluate model. If None, evaluates
until input_fn raises an end-of-input exception.


	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the evaluation call.


	checkpoint_path – Path of a specific checkpoint to evaluate. If None, the
latest checkpoint in model_dir is used.  If there are no checkpoints
in model_dir, evaluation is run with newly initialized Variables
instead of ones restored from checkpoint.


	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.






	Returns

	A dict containing the evaluation metrics specified in model_fn keyed by
name, as well as an entry global_step which contains the value of the
global step for which this evaluation was performed. For canned
estimators, the dict contains the loss (mean loss per mini-batch) and
the average_loss (mean loss per sample). Canned classifiers also return
the accuracy. Canned regressors also return the label/mean and the
prediction/mean.



	Raises

	ValueError – If steps <= 0.










	
experimental_export_all_saved_models(export_dir_base, input_receiver_fn_map, hooks=None, assets_extra=None, as_text=False, checkpoint_path=None)

	Exports a SavedModel with tf.MetaGraphDefs for each requested mode.

For each mode passed in via the input_receiver_fn_map,
this method builds a new graph by calling the input_receiver_fn to obtain
feature and label Tensor`s. Next, this method calls the `Estimator’s
model_fn in the passed mode to generate the model graph based on
those features and labels, and restores the given checkpoint
(or, lacking that, the most recent checkpoint) into the graph.
Only one of the modes is used for saving variables to the SavedModel
(order of preference: tf.estimator.ModeKeys.TRAIN,
tf.estimator.ModeKeys.EVAL, then
tf.estimator.ModeKeys.PREDICT), such that up to three
tf.MetaGraphDefs are saved with a single set of variables in a single
SavedModel directory.

For the variables and tf.MetaGraphDefs, a timestamped export directory
below export_dir_base, and writes a SavedModel into it containing the
tf.MetaGraphDef for the given mode and its associated signatures.

For prediction, the exported MetaGraphDef will provide one SignatureDef
for each element of the export_outputs dict returned from the model_fn,
named using the same keys.  One of these keys is always
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
indicating which signature will be served when a serving request does not
specify one. For each signature, the outputs are provided by the
corresponding tf.estimator.export.ExportOutput`s, and the inputs are always
the input receivers provided by the `serving_input_receiver_fn.

For training and evaluation, the train_op is stored in an extra
collection, and loss, metrics, and predictions are included in a
SignatureDef for the mode in question.

Extra assets may be written into the SavedModel via the assets_extra
argument.  This should be a dict, where each key gives a destination path
(including the filename) relative to the assets.extra directory.  The
corresponding value gives the full path of the source file to be copied.
For example, the simple case of copying a single file without renaming it
is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.


	Parameters

	
	export_dir_base – A string containing a directory in which to create
timestamped subdirectories containing exported `SavedModel`s.


	input_receiver_fn_map – dict of tf.estimator.ModeKeys to
input_receiver_fn mappings, where the input_receiver_fn is a
function that takes no arguments and returns the appropriate subclass of
InputReceiver.


	assets_extra – A dict specifying how to populate the assets.extra directory
within the exported SavedModel, or None if no extra assets are
needed.


	as_text – whether to write the SavedModel proto in text format.


	checkpoint_path – The checkpoint path to export.  If None (the default),
the most recent checkpoint found within the model directory is chosen.






	Returns

	The path to the exported directory as a bytes object.



	Raises

	ValueError – if any input_receiver_fn is None, no export_outputs
are provided, or no checkpoint can be found.










	
export_saved_model(export_dir_base, serving_input_receiver_fn, hooks=None, assets_extra=None, as_text=False, checkpoint_path=None, experimental_mode='infer')

	Exports inference graph as a SavedModel into the given dir.

For a detailed guide on SavedModel, see
[Using the SavedModel format]
(https://tensorflow.org/guide/saved_model#savedmodels_from_estimators).

This method builds a new graph by first calling the
serving_input_receiver_fn to obtain feature Tensor`s, and then calling
this `Estimator’s model_fn to generate the model graph based on those
features. It restores the given checkpoint (or, lacking that, the most
recent checkpoint) into this graph in a fresh session.  Finally it creates
a timestamped export directory below the given export_dir_base, and writes
a SavedModel into it containing a single tf.MetaGraphDef saved from this
session.

The exported MetaGraphDef will provide one SignatureDef for each
element of the export_outputs dict returned from the model_fn, named
using the same keys.  One of these keys is always
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
indicating which signature will be served when a serving request does not
specify one. For each signature, the outputs are provided by the
corresponding tf.estimator.export.ExportOutput`s, and the inputs are always
the input receivers provided by the `serving_input_receiver_fn.

Extra assets may be written into the SavedModel via the assets_extra
argument.  This should be a dict, where each key gives a destination path
(including the filename) relative to the assets.extra directory.  The
corresponding value gives the full path of the source file to be copied.
For example, the simple case of copying a single file without renaming it
is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

The experimental_mode parameter can be used to export a single
train/eval/predict graph as a SavedModel.
See experimental_export_all_saved_models for full docs.


	Parameters

	
	export_dir_base – A string containing a directory in which to create
timestamped subdirectories containing exported `SavedModel`s.


	serving_input_receiver_fn – A function that takes no argument and returns a
tf.estimator.export.ServingInputReceiver or
tf.estimator.export.TensorServingInputReceiver.


	assets_extra – A dict specifying how to populate the assets.extra directory
within the exported SavedModel, or None if no extra assets are
needed.


	as_text – whether to write the SavedModel proto in text format.


	checkpoint_path – The checkpoint path to export.  If None (the default),
the most recent checkpoint found within the model directory is chosen.


	experimental_mode – tf.estimator.ModeKeys value indicating with mode will
be exported. Note that this feature is experimental.






	Returns

	The path to the exported directory as a bytes object.



	Raises

	
	ValueError – if no serving_input_receiver_fn is provided, no


	export_outputs are provided, or no checkpoint can be found.













	
export_savedmodel(export_dir_base, serving_input_receiver_fn, hooks=None, assets_extra=None, as_text=False, checkpoint_path=None, strip_default_attrs=False)

	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
This function has been renamed, use export_saved_model instead.






	
get_variable_names()

	Returns list of all variable names in this model.


	Returns

	List of names.



	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.










	
get_variable_value(name)

	Returns value of the variable given by name.


	Parameters

	name – string or a list of string, name of the tensor.



	Returns

	Numpy array - value of the tensor.



	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.










	
latest_checkpoint()

	Finds the filename of the latest saved checkpoint file in model_dir.


	Returns

	The full path to the latest checkpoint or None if no checkpoint was
found.










	
model_fn

	Returns the model_fn which is bound to self.params.


	Returns

	def model_fn(features, labels, mode, config)



	Return type

	The model_fn with following signature










	
predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None, yield_single_examples=True)

	Yields predictions for given features.

Please note that interleaving two predict outputs does not work. See:
[issue/20506](
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517)


	Parameters

	
	input_fn – A function that constructs the features. Prediction continues
until input_fn raises an end-of-input exception
(tf.errors.OutOfRangeError or StopIteration). See [Premade
Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:
* tf.data.Dataset object – Outputs of Dataset object must have


same constraints as below.





	features – A tf.Tensor or a dictionary of string feature name to
Tensor. features are consumed by model_fn. They should satisfy
the expectation of model_fn from inputs.


	A tuple, in which case
the first item is extracted as features.







	predict_keys – list of str, name of the keys to predict. It is used if
the tf.estimator.EstimatorSpec.predictions is a dict. If
predict_keys is used then rest of the predictions will be filtered
from the dictionary. If None, returns all.


	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the prediction call.


	checkpoint_path – Path of a specific checkpoint to predict. If None, the
latest checkpoint in model_dir is used.  If there are no checkpoints
in model_dir, prediction is run with newly initialized Variables
instead of ones restored from checkpoint.


	yield_single_examples – If False, yields the whole batch as returned by
the model_fn instead of decomposing the batch into individual
elements. This is useful if model_fn returns some tensors whose first
dimension is not equal to the batch size.






	Yields

	Evaluated values of predictions tensors.



	Raises

	
	ValueError – If batch length of predictions is not the same and
yield_single_examples is True.


	ValueError – If there is a conflict between predict_keys and
predictions. For example if predict_keys is not None but
tf.estimator.EstimatorSpec.predictions is not a dict.













	
train(input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)

	Trains a model given training data input_fn.

NOTE: If a given input_fn raises an OutOfRangeError, then all of
training will exit. The best practice is to make the training dataset repeat
forever, in order to perform model search for more than one iteration.


	Parameters

	
	input_fn – A function that provides input data for training as minibatches.
See [Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:



	A tf.data.Dataset object: Outputs of Dataset object must
be a tuple (features, labels) with same constraints as below.


	A tuple (features, labels): Where features is a
tf.Tensor or a dictionary of string feature name to
Tensor and labels is a Tensor or a dictionary of string
label name to Tensor. Both features and labels are consumed by
model_fn. They should satisfy the expectation of model_fn from
inputs.










	hooks – List of tf.train.SessionRunHook subclass instances. Used
for callbacks inside the training loop.


	steps – Number of steps for which to train the model. If None,
train forever or train until input_fn generates the
tf.errors.OutOfRange error or StopIteration exception.
steps works incrementally. If you call two times train(steps=10)
then training occurs in total 20 steps. If OutOfRange or
StopIteration occurs in the middle, training stops before 20
steps. If you don’t want to have incremental behavior please set
max_steps instead. If set, max_steps must be None.


	max_steps – Number of total steps for which to train model. If
None, train forever or train until input_fn generates the
tf.errors.OutOfRange error or StopIteration exception.
If set, steps must be None. If OutOfRange or
StopIteration occurs in the middle, training stops before
max_steps steps. Two calls to train(steps=100) means 200 training
iterations. On the other hand, two calls to train(max_steps=100)
means that the second call will not do any iteration since first call
did all 100 steps.


	saving_listeners – list of CheckpointSaverListener objects. Used
for callbacks that run immediately before or after checkpoint savings.






	Returns

	self, for chaining.



	Raises

	
	ValueError – If both steps and max_steps are not None.


	ValueError – If either steps or max_steps <= 0.


















Estimator


	
class adanet.Estimator(head, subnetwork_generator, max_iteration_steps, ensemblers=None, ensemble_strategies=None, evaluator=None, report_materializer=None, metric_fn=None, force_grow=False, replicate_ensemble_in_training=False, adanet_loss_decay=0.9, delay_secs_per_worker=5, max_worker_delay_secs=60, worker_wait_secs=5, worker_wait_timeout_secs=7200, model_dir=None, report_dir=None, config=None, debug=False, enable_ensemble_summaries=True, enable_subnetwork_summaries=True, global_step_combiner_fn=<function reduce_mean>, max_iterations=None, export_subnetwork_logits=False, export_subnetwork_last_layer=True, replay_config=None, **kwargs)

	Bases: tensorflow_estimator.python.estimator.estimator.EstimatorV2

A tf.estimator.Estimator for training, evaluation, and serving.

This implementation uses an adanet.subnetwork.Generator as its weak
learning algorithm for generating candidate subnetworks. These are trained in
parallel using a single graph per iteration. At the end of each iteration, the
estimator saves the sub-graph of the best subnetwork ensemble and its weights
as a separate checkpoint. At the beginning of the next iteration, the
estimator imports the previous iteration’s frozen graph and adds ops for the
next candidates as part of a new graph and session. This allows the estimator
have the performance of Tensorflow’s static graph constraint (minus the
performance hit of reconstructing a graph between iterations), while having
the flexibility of having a dynamic graph.

NOTE: Subclassing tf.estimator.Estimator is only necessary to work
with tf.estimator.train_and_evaluate() which asserts that the estimator
argument is a tf.estimator.Estimator subclass. However, all training
is delegated to a separate tf.estimator.Estimator instance. It is
responsible for supporting both local and distributed training. As such, the
adanet.Estimator is only responsible for bookkeeping across
iterations.


	Parameters

	
	head – A tf.contrib.estimator.Head instance for computing loss and
evaluation metrics for every candidate.


	subnetwork_generator – The adanet.subnetwork.Generator which defines
the candidate subnetworks to train and evaluate at every AdaNet iteration.


	max_iteration_steps – Total number of steps for which to train candidates per
iteration. If OutOfRange or StopIteration occurs in the
middle, training stops before max_iteration_steps steps. When
None, it will train the current iteration forever.


	ensemblers – An iterable of adanet.ensemble.Ensembler objects that
define how to ensemble a group of subnetworks. If there are multiple,
each should have a different name property.


	ensemble_strategies – An iterable of adanet.ensemble.Strategy
objects that define the candidate ensembles of subnetworks to explore at
each iteration.


	evaluator – An adanet.Evaluator for candidate selection after all
subnetworks are done training. When None, candidate selection uses
a moving average of their adanet.Ensemble AdaNet loss during
training instead. In order to use the AdaNet algorithm as described in
[Cortes et al., ‘17], the given adanet.Evaluator must be created
with the same dataset partition used during training. Otherwise, this
framework will perform AdaNet.HoldOut which uses a holdout set for
candidate selection, but does not benefit from learning guarantees.


	report_materializer – An adanet.ReportMaterializer. Its reports are
made available to the subnetwork_generator at the next iteration, so
that it can adapt its search space. When None, the
subnetwork_generator generate_candidates() method will receive
empty Lists for their previous_ensemble_reports and all_reports
arguments.


	metric_fn – A function for adding custom evaluation metrics, which should
obey the following signature:



	Args:
Can only have the following three arguments in any order:
- predictions: Predictions Tensor or dict of Tensor


created by given head.





	features: Input dict of Tensor objects created by
input_fn which is given to estimator.evaluate() as an
argument.


	labels: Labels Tensor or dict of Tensor (for multi-head)
created by input_fn which is given to
estimator.evaluate() as an argument.






	Returns: Dict of metric results keyed by name. Final metrics are a
union of this and head’s existing metrics. If there is a name
conflict between this and head`s existing metrics, this will
override the existing one. The values of the dict are the results of
calling a metric function, namely a :code:`(metric_tensor, update_op)
tuple.










	force_grow – Boolean override that forces the ensemble to grow by one
subnetwork at the end of each iteration. Normally at the end of each
iteration, AdaNet selects the best candidate ensemble according to its
performance on the AdaNet objective. In some cases, the best ensemble is
the previous_ensemble as opposed to one that includes a newly trained
subnetwork. When True, the algorithm will not select the
previous_ensemble as the best candidate, and will ensure that after n
iterations the final ensemble is composed of n subnetworks.


	replicate_ensemble_in_training – Whether to rebuild the frozen subnetworks of
the ensemble in training mode, which can change the outputs of the frozen
subnetworks in the ensemble. When False and during candidate training,
the frozen subnetworks in the ensemble are in prediction mode, so
training-only ops like dropout are not applied to them. When True and
training the candidates, the frozen subnetworks will be in training mode
as well, so they will apply training-only ops like dropout.  This argument
is useful for regularizing learning mixture weights, or for making
training-only side inputs available in subsequent iterations. For most
use-cases, this should be False.


	adanet_loss_decay – Float decay for the exponential-moving-average of the
AdaNet objective throughout training. This moving average is a data-
driven way tracking the best candidate with only the training set.


	delay_secs_per_worker – Float number of seconds to delay starting the
i-th worker. Staggering worker start-up during distributed asynchronous
SGD can improve training stability and speed up convergence. Each worker
will wait (i+1) * delay_secs_per_worker seconds before beginning training.


	max_worker_delay_secs – Float max number of seconds to delay starting the
i-th worker. Staggering worker start-up during distributed asynchronous
SGD can improve training stability and speed up convergence. Each worker
will wait up to max_worker_delay_secs before beginning training.


	worker_wait_secs – Float number of seconds for workers to wait before
checking if the chief prepared the next iteration.


	worker_wait_timeout_secs – Float number of seconds for workers to wait for
chief to prepare the next iteration during distributed training. This is
needed to prevent workers waiting indefinitely for a chief that may have
crashed or been turned down. When the timeout is exceeded, the worker
exits the train loop. In situations where the chief job is much slower
than the worker jobs, this timeout should be increased.


	model_dir – Directory to save model parameters, graph and etc. This can also
be used to load checkpoints from the directory into a estimator to
continue training a previously saved model.


	report_dir – Directory where the
adanet.subnetwork.MaterializedReport`s materialized by
:code:`report_materializer would be saved. If report_materializer
is None, this will not save anything. If None or
empty string, defaults to <model_dir>/report.


	config – RunConfig object to configure the runtime settings.


	debug – Boolean to enable debug mode which will check features and labels
for Infs and NaNs.


	enable_ensemble_summaries – Whether to record summaries to display in
TensorBoard for each ensemble candidate. Disable to reduce memory and disk
usage per run.


	enable_subnetwork_summaries – Whether to record summaries to display in
TensorBoard for each subnetwork. Disable to reduce memory and disk usage
per run.


	global_step_combiner_fn – Function for combining each subnetwork’s
iteration step into the global step. By default it is the average of all
subnetwork iteration steps, which may affect the global_steps/sec as
subnetworks early stop and no longer increase their iteration step.


	max_iterations – Integer maximum number of AdaNet iterations (a.k.a. rounds)
of generating new subnetworks and ensembles, training them, and evaluating
them against the current best ensemble. When None, AdaNet will
keep iterating until Estimator#train terminates. Otherwise, if
max_iteratios is supplied and is met or exceeded during training,
training will terminate even before steps or max_steps.


	export_subnetwork_logits – Whether to include subnetwork logits in exports.


	export_subnetwork_last_layer – Whether to include subnetwork last layer in
exports.


	replay_config – Optional adanet.replay.Config to specify a previous
AdaNet run to replay. Given the exact same search space but potentially
different training data, the replay_config causes the estimator to
reconstruct the previously trained model without performing a search.
NOTE: The previous run must have executed with identical hyperparameters
as the new run in order to be replayable. The only supported difference is
that the underlying data can change.


	**kwargs – Extra keyword args passed to the parent.






	Returns

	An adanet.Estimator instance.



	Raises

	
	ValueError – If subnetwork_generator is None.


	ValueError – If max_iteration_steps is <= 0.


	ValueError – If model_dir is not specified during distributed
training.


	ValueError – If max_iterations is <= 0.









	
deprecation = <module 'tensorflow.python.util.deprecation' from '/home/docs/checkouts/readthedocs.org/user_builds/adanet/envs/latest/lib/python3.7/site-packages/tensorflow/python/util/deprecation.py'>

	




	
eval_dir(name=None)

	Shows the directory name where evaluation metrics are dumped.


	Parameters

	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.



	Returns

	A string which is the path of directory contains evaluation metrics.










	
evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)

	Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data.
Evaluates until:
- steps batches are processed, or
- input_fn raises an end-of-input exception (tf.errors.OutOfRangeError
or StopIteration).


	Parameters

	
	input_fn – A function that constructs the input data for evaluation. See
[Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:
* A tf.data.Dataset object: Outputs of Dataset object must be a


tuple (features, labels) with same constraints as below.





	A tuple (features, labels): Where features is a tf.Tensor or a
dictionary of string feature name to Tensor and labels is a
Tensor or a dictionary of string label name to Tensor. Both
features and labels are consumed by model_fn. They should
satisfy the expectation of model_fn from inputs.







	steps – Number of steps for which to evaluate model. If None, evaluates
until input_fn raises an end-of-input exception.


	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the evaluation call.


	checkpoint_path – Path of a specific checkpoint to evaluate. If None, the
latest checkpoint in model_dir is used.  If there are no checkpoints
in model_dir, evaluation is run with newly initialized Variables
instead of ones restored from checkpoint.


	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.






	Returns

	A dict containing the evaluation metrics specified in model_fn keyed by
name, as well as an entry global_step which contains the value of the
global step for which this evaluation was performed. For canned
estimators, the dict contains the loss (mean loss per mini-batch) and
the average_loss (mean loss per sample). Canned classifiers also return
the accuracy. Canned regressors also return the label/mean and the
prediction/mean.



	Raises

	ValueError – If steps <= 0.










	
experimental_export_all_saved_models(export_dir_base, input_receiver_fn_map, hooks=None, assets_extra=None, as_text=False, checkpoint_path=None)

	Exports a SavedModel with tf.MetaGraphDefs for each requested mode.

For each mode passed in via the input_receiver_fn_map,
this method builds a new graph by calling the input_receiver_fn to obtain
feature and label Tensor`s. Next, this method calls the `Estimator’s
model_fn in the passed mode to generate the model graph based on
those features and labels, and restores the given checkpoint
(or, lacking that, the most recent checkpoint) into the graph.
Only one of the modes is used for saving variables to the SavedModel
(order of preference: tf.estimator.ModeKeys.TRAIN,
tf.estimator.ModeKeys.EVAL, then
tf.estimator.ModeKeys.PREDICT), such that up to three
tf.MetaGraphDefs are saved with a single set of variables in a single
SavedModel directory.

For the variables and tf.MetaGraphDefs, a timestamped export directory
below export_dir_base, and writes a SavedModel into it containing the
tf.MetaGraphDef for the given mode and its associated signatures.

For prediction, the exported MetaGraphDef will provide one SignatureDef
for each element of the export_outputs dict returned from the model_fn,
named using the same keys.  One of these keys is always
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
indicating which signature will be served when a serving request does not
specify one. For each signature, the outputs are provided by the
corresponding tf.estimator.export.ExportOutput`s, and the inputs are always
the input receivers provided by the `serving_input_receiver_fn.

For training and evaluation, the train_op is stored in an extra
collection, and loss, metrics, and predictions are included in a
SignatureDef for the mode in question.

Extra assets may be written into the SavedModel via the assets_extra
argument.  This should be a dict, where each key gives a destination path
(including the filename) relative to the assets.extra directory.  The
corresponding value gives the full path of the source file to be copied.
For example, the simple case of copying a single file without renaming it
is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.


	Parameters

	
	export_dir_base – A string containing a directory in which to create
timestamped subdirectories containing exported `SavedModel`s.


	input_receiver_fn_map – dict of tf.estimator.ModeKeys to
input_receiver_fn mappings, where the input_receiver_fn is a
function that takes no arguments and returns the appropriate subclass of
InputReceiver.


	assets_extra – A dict specifying how to populate the assets.extra directory
within the exported SavedModel, or None if no extra assets are
needed.


	as_text – whether to write the SavedModel proto in text format.


	checkpoint_path – The checkpoint path to export.  If None (the default),
the most recent checkpoint found within the model directory is chosen.






	Returns

	The path to the exported directory as a bytes object.



	Raises

	ValueError – if any input_receiver_fn is None, no export_outputs
are provided, or no checkpoint can be found.










	
export_saved_model(export_dir_base, serving_input_receiver_fn, hooks=None, assets_extra=None, as_text=False, checkpoint_path=None, experimental_mode='infer')

	Exports inference graph as a SavedModel into the given dir.

For a detailed guide on SavedModel, see
[Using the SavedModel format]
(https://tensorflow.org/guide/saved_model#savedmodels_from_estimators).

This method builds a new graph by first calling the
serving_input_receiver_fn to obtain feature Tensor`s, and then calling
this `Estimator’s model_fn to generate the model graph based on those
features. It restores the given checkpoint (or, lacking that, the most
recent checkpoint) into this graph in a fresh session.  Finally it creates
a timestamped export directory below the given export_dir_base, and writes
a SavedModel into it containing a single tf.MetaGraphDef saved from this
session.

The exported MetaGraphDef will provide one SignatureDef for each
element of the export_outputs dict returned from the model_fn, named
using the same keys.  One of these keys is always
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
indicating which signature will be served when a serving request does not
specify one. For each signature, the outputs are provided by the
corresponding tf.estimator.export.ExportOutput`s, and the inputs are always
the input receivers provided by the `serving_input_receiver_fn.

Extra assets may be written into the SavedModel via the assets_extra
argument.  This should be a dict, where each key gives a destination path
(including the filename) relative to the assets.extra directory.  The
corresponding value gives the full path of the source file to be copied.
For example, the simple case of copying a single file without renaming it
is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

The experimental_mode parameter can be used to export a single
train/eval/predict graph as a SavedModel.
See experimental_export_all_saved_models for full docs.


	Parameters

	
	export_dir_base – A string containing a directory in which to create
timestamped subdirectories containing exported `SavedModel`s.


	serving_input_receiver_fn – A function that takes no argument and returns a
tf.estimator.export.ServingInputReceiver or
tf.estimator.export.TensorServingInputReceiver.


	assets_extra – A dict specifying how to populate the assets.extra directory
within the exported SavedModel, or None if no extra assets are
needed.


	as_text – whether to write the SavedModel proto in text format.


	checkpoint_path – The checkpoint path to export.  If None (the default),
the most recent checkpoint found within the model directory is chosen.


	experimental_mode – tf.estimator.ModeKeys value indicating with mode will
be exported. Note that this feature is experimental.






	Returns

	The path to the exported directory as a bytes object.



	Raises

	
	ValueError – if no serving_input_receiver_fn is provided, no


	export_outputs are provided, or no checkpoint can be found.













	
export_savedmodel(export_dir_base, serving_input_receiver_fn, hooks=None, assets_extra=None, as_text=False, checkpoint_path=None, strip_default_attrs=False)

	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
This function has been renamed, use export_saved_model instead.






	
get_variable_names()

	Returns list of all variable names in this model.


	Returns

	List of names.



	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.










	
get_variable_value(name)

	Returns value of the variable given by name.


	Parameters

	name – string or a list of string, name of the tensor.



	Returns

	Numpy array - value of the tensor.



	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.










	
latest_checkpoint()

	Finds the filename of the latest saved checkpoint file in model_dir.


	Returns

	The full path to the latest checkpoint or None if no checkpoint was
found.










	
model_fn

	Returns the model_fn which is bound to self.params.


	Returns

	def model_fn(features, labels, mode, config)



	Return type

	The model_fn with following signature










	
predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None, yield_single_examples=True)

	Yields predictions for given features.

Please note that interleaving two predict outputs does not work. See:
[issue/20506](
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517)


	Parameters

	
	input_fn – A function that constructs the features. Prediction continues
until input_fn raises an end-of-input exception
(tf.errors.OutOfRangeError or StopIteration). See [Premade
Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:
* tf.data.Dataset object – Outputs of Dataset object must have


same constraints as below.





	features – A tf.Tensor or a dictionary of string feature name to
Tensor. features are consumed by model_fn. They should satisfy
the expectation of model_fn from inputs.


	A tuple, in which case
the first item is extracted as features.







	predict_keys – list of str, name of the keys to predict. It is used if
the tf.estimator.EstimatorSpec.predictions is a dict. If
predict_keys is used then rest of the predictions will be filtered
from the dictionary. If None, returns all.


	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the prediction call.


	checkpoint_path – Path of a specific checkpoint to predict. If None, the
latest checkpoint in model_dir is used.  If there are no checkpoints
in model_dir, prediction is run with newly initialized Variables
instead of ones restored from checkpoint.


	yield_single_examples – If False, yields the whole batch as returned by
the model_fn instead of decomposing the batch into individual
elements. This is useful if model_fn returns some tensors whose first
dimension is not equal to the batch size.






	Yields

	Evaluated values of predictions tensors.



	Raises

	
	ValueError – If batch length of predictions is not the same and
yield_single_examples is True.


	ValueError – If there is a conflict between predict_keys and
predictions. For example if predict_keys is not None but
tf.estimator.EstimatorSpec.predictions is not a dict.













	
train(input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)

	Trains a model given training data input_fn.

NOTE: If a given input_fn raises an OutOfRangeError, then all of
training will exit. The best practice is to make the training dataset repeat
forever, in order to perform model search for more than one iteration.


	Parameters

	
	input_fn – A function that provides input data for training as minibatches.
See [Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:



	A tf.data.Dataset object: Outputs of Dataset object must
be a tuple (features, labels) with same constraints as below.


	A tuple (features, labels): Where features is a
tf.Tensor or a dictionary of string feature name to
Tensor and labels is a Tensor or a dictionary of string
label name to Tensor. Both features and labels are consumed by
model_fn. They should satisfy the expectation of model_fn from
inputs.










	hooks – List of tf.train.SessionRunHook subclass instances. Used
for callbacks inside the training loop.


	steps – Number of steps for which to train the model. If None,
train forever or train until input_fn generates the
tf.errors.OutOfRange error or StopIteration exception.
steps works incrementally. If you call two times train(steps=10)
then training occurs in total 20 steps. If OutOfRange or
StopIteration occurs in the middle, training stops before 20
steps. If you don’t want to have incremental behavior please set
max_steps instead. If set, max_steps must be None.


	max_steps – Number of total steps for which to train model. If
None, train forever or train until input_fn generates the
tf.errors.OutOfRange error or StopIteration exception.
If set, steps must be None. If OutOfRange or
StopIteration occurs in the middle, training stops before
max_steps steps. Two calls to train(steps=100) means 200 training
iterations. On the other hand, two calls to train(max_steps=100)
means that the second call will not do any iteration since first call
did all 100 steps.


	saving_listeners – list of CheckpointSaverListener objects. Used
for callbacks that run immediately before or after checkpoint savings.






	Returns

	self, for chaining.



	Raises

	
	ValueError – If both steps and max_steps are not None.


	ValueError – If either steps or max_steps <= 0.


















TPUEstimator


	
class adanet.TPUEstimator(head, subnetwork_generator, max_iteration_steps, ensemblers=None, ensemble_strategies=None, evaluator=None, report_materializer=None, metric_fn=None, force_grow=False, replicate_ensemble_in_training=False, adanet_loss_decay=0.9, model_dir=None, report_dir=None, config=None, use_tpu=True, eval_on_tpu=True, export_to_tpu=True, train_batch_size=None, eval_batch_size=None, predict_batch_size=None, embedding_config_spec=None, debug=False, enable_ensemble_summaries=True, enable_subnetwork_summaries=True, export_subnetwork_logits=False, export_subnetwork_last_layer=True, global_step_combiner_fn=<function reduce_mean>, max_iterations=None, replay_config=None, add_predict_batch_config=True, **kwargs)

	Bases: adanet.core.estimator.Estimator, tensorflow_estimator.python.estimator.tpu.tpu_estimator.TPUEstimator

An adanet.Estimator capable of training and evaluating on TPU.

Unless use_tpu=False, training will run on TPU. However, certain parts
of the AdaNet training loop, such as report materialization and best candidate
selection, will still occurr on CPU. Furthermore, if using TPUEmbedding (i.e.
embedding_config_spec is supplied), inference will also occurr on CPU.

TODO: Provide the missing functionality detailed below.
N.B: Embeddings using the TPUEmbedding (i.e. embedding_config_spec
is provided) only support shared_embedding_columns when running for
multiple AdaNet iterations. Using regular embedding_columns will cause
iterations 2..n to fail because of mismatched embedding scopes.


	Parameters

	
	head – See adanet.Estimator.


	subnetwork_generator – See adanet.Estimator.


	max_iteration_steps – See adanet.Estimator.


	ensemblers – See adanet.Estimator.


	ensemble_strategies – See adanet.Estimator.


	evaluator – See adanet.Estimator.


	report_materializer – See adanet.Estimator.


	metric_fn – See adanet.Estimator.


	force_grow – See adanet.Estimator.


	replicate_ensemble_in_training – See adanet.Estimator.


	adanet_loss_decay – See adanet.Estimator.


	report_dir – See adanet.Estimator.


	config – See adanet.Estimator.


	use_tpu – Boolean to enable training on TPU. Defaults to True and is
only provided to allow debugging models on CPU/GPU. Use
adanet.Estimator instead if you do not plan to run on TPU.


	eval_on_tpu – Boolean to enable evaluating on TPU. Defaults to True.
Ignored if use_tpu=False.


	export_to_tpu – See tf.compat.v1.estimator.tpu.TPUEstimator.


	train_batch_size – See tf.compat.v1.estimator.tpu.TPUEstimator.
Defaults to 0 if None.


	eval_batch_size – See tf.compat.v1.estimator.tpu.TPUEstimator.
Defaults to train_batch_size if None.


	predict_batch_size – See tf.compat.v1.estimator.tpu.TPUEstimator.
Defaults to eval_batch_size if None.


	embedding_config_spec – See tf.compat.v1.estimator.tpu.TPUEstimator.
If supplied, predict will be called on CPU and no TPU compatible


SavedModel will be exported.







	debug – See adanet.Estimator.


	enable_ensemble_summaries – See adanet.Estimator.


	enable_subnetwork_summaries – See adanet.Estimator.


	export_subnetwork_logits – Whether to include subnetwork logits in exports.


	export_subnetwork_last_layer – Whether to include subnetwork last layer in
exports.


	global_step_combiner_fn – See adanet.Estimator.


	max_iterations – See adanet.Estimator.


	replay_config – See adanet.Estimator.


	add_predict_batch_config – If True, supplies a default
tpu_estimator.BatchConfig when calling
tpu_estimator.model_fn_inference_on_tpu, otherwise supplies None.


	**kwargs – Extra keyword args passed to the parent.









	
deprecation = <module 'tensorflow.python.util.deprecation' from '/home/docs/checkouts/readthedocs.org/user_builds/adanet/envs/latest/lib/python3.7/site-packages/tensorflow/python/util/deprecation.py'>

	




	
eval_dir(name=None)

	Shows the directory name where evaluation metrics are dumped.


	Parameters

	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.



	Returns

	A string which is the path of directory contains evaluation metrics.










	
evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)

	Evaluates the model given evaluation data input_fn.

For each step, calls input_fn, which returns one batch of data.
Evaluates until:
- steps batches are processed, or
- input_fn raises an end-of-input exception (tf.errors.OutOfRangeError
or StopIteration).


	Parameters

	
	input_fn – A function that constructs the input data for evaluation. See
[Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:
* A tf.data.Dataset object: Outputs of Dataset object must be a


tuple (features, labels) with same constraints as below.





	A tuple (features, labels): Where features is a tf.Tensor or a
dictionary of string feature name to Tensor and labels is a
Tensor or a dictionary of string label name to Tensor. Both
features and labels are consumed by model_fn. They should
satisfy the expectation of model_fn from inputs.







	steps – Number of steps for which to evaluate model. If None, evaluates
until input_fn raises an end-of-input exception.


	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the evaluation call.


	checkpoint_path – Path of a specific checkpoint to evaluate. If None, the
latest checkpoint in model_dir is used.  If there are no checkpoints
in model_dir, evaluation is run with newly initialized Variables
instead of ones restored from checkpoint.


	name – Name of the evaluation if user needs to run multiple evaluations on
different data sets, such as on training data vs test data. Metrics for
different evaluations are saved in separate folders, and appear
separately in tensorboard.






	Returns

	A dict containing the evaluation metrics specified in model_fn keyed by
name, as well as an entry global_step which contains the value of the
global step for which this evaluation was performed. For canned
estimators, the dict contains the loss (mean loss per mini-batch) and
the average_loss (mean loss per sample). Canned classifiers also return
the accuracy. Canned regressors also return the label/mean and the
prediction/mean.



	Raises

	ValueError – If steps <= 0.










	
experimental_export_all_saved_models(export_dir_base, input_receiver_fn_map, hooks=None, assets_extra=None, as_text=False, checkpoint_path=None)

	Exports a SavedModel with tf.MetaGraphDefs for each requested mode.

For each mode passed in via the input_receiver_fn_map,
this method builds a new graph by calling the input_receiver_fn to obtain
feature and label Tensor`s. Next, this method calls the `Estimator’s
model_fn in the passed mode to generate the model graph based on
those features and labels, and restores the given checkpoint
(or, lacking that, the most recent checkpoint) into the graph.
Only one of the modes is used for saving variables to the SavedModel
(order of preference: tf.estimator.ModeKeys.TRAIN,
tf.estimator.ModeKeys.EVAL, then
tf.estimator.ModeKeys.PREDICT), such that up to three
tf.MetaGraphDefs are saved with a single set of variables in a single
SavedModel directory.

For the variables and tf.MetaGraphDefs, a timestamped export directory
below export_dir_base, and writes a SavedModel into it containing the
tf.MetaGraphDef for the given mode and its associated signatures.

For prediction, the exported MetaGraphDef will provide one SignatureDef
for each element of the export_outputs dict returned from the model_fn,
named using the same keys.  One of these keys is always
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
indicating which signature will be served when a serving request does not
specify one. For each signature, the outputs are provided by the
corresponding tf.estimator.export.ExportOutput`s, and the inputs are always
the input receivers provided by the `serving_input_receiver_fn.

For training and evaluation, the train_op is stored in an extra
collection, and loss, metrics, and predictions are included in a
SignatureDef for the mode in question.

Extra assets may be written into the SavedModel via the assets_extra
argument.  This should be a dict, where each key gives a destination path
(including the filename) relative to the assets.extra directory.  The
corresponding value gives the full path of the source file to be copied.
For example, the simple case of copying a single file without renaming it
is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.


	Parameters

	
	export_dir_base – A string containing a directory in which to create
timestamped subdirectories containing exported `SavedModel`s.


	input_receiver_fn_map – dict of tf.estimator.ModeKeys to
input_receiver_fn mappings, where the input_receiver_fn is a
function that takes no arguments and returns the appropriate subclass of
InputReceiver.


	assets_extra – A dict specifying how to populate the assets.extra directory
within the exported SavedModel, or None if no extra assets are
needed.


	as_text – whether to write the SavedModel proto in text format.


	checkpoint_path – The checkpoint path to export.  If None (the default),
the most recent checkpoint found within the model directory is chosen.






	Returns

	The path to the exported directory as a bytes object.



	Raises

	ValueError – if any input_receiver_fn is None, no export_outputs
are provided, or no checkpoint can be found.










	
export_saved_model(export_dir_base, serving_input_receiver_fn, hooks=None, assets_extra=None, as_text=False, checkpoint_path=None, experimental_mode='infer')

	Exports inference graph as a SavedModel into the given dir.

For a detailed guide on SavedModel, see
[Using the SavedModel format]
(https://tensorflow.org/guide/saved_model#savedmodels_from_estimators).

This method builds a new graph by first calling the
serving_input_receiver_fn to obtain feature Tensor`s, and then calling
this `Estimator’s model_fn to generate the model graph based on those
features. It restores the given checkpoint (or, lacking that, the most
recent checkpoint) into this graph in a fresh session.  Finally it creates
a timestamped export directory below the given export_dir_base, and writes
a SavedModel into it containing a single tf.MetaGraphDef saved from this
session.

The exported MetaGraphDef will provide one SignatureDef for each
element of the export_outputs dict returned from the model_fn, named
using the same keys.  One of these keys is always
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
indicating which signature will be served when a serving request does not
specify one. For each signature, the outputs are provided by the
corresponding tf.estimator.export.ExportOutput`s, and the inputs are always
the input receivers provided by the `serving_input_receiver_fn.

Extra assets may be written into the SavedModel via the assets_extra
argument.  This should be a dict, where each key gives a destination path
(including the filename) relative to the assets.extra directory.  The
corresponding value gives the full path of the source file to be copied.
For example, the simple case of copying a single file without renaming it
is specified as {‘my_asset_file.txt’: ‘/path/to/my_asset_file.txt’}.

The experimental_mode parameter can be used to export a single
train/eval/predict graph as a SavedModel.
See experimental_export_all_saved_models for full docs.


	Parameters

	
	export_dir_base – A string containing a directory in which to create
timestamped subdirectories containing exported `SavedModel`s.


	serving_input_receiver_fn – A function that takes no argument and returns a
tf.estimator.export.ServingInputReceiver or
tf.estimator.export.TensorServingInputReceiver.


	assets_extra – A dict specifying how to populate the assets.extra directory
within the exported SavedModel, or None if no extra assets are
needed.


	as_text – whether to write the SavedModel proto in text format.


	checkpoint_path – The checkpoint path to export.  If None (the default),
the most recent checkpoint found within the model directory is chosen.


	experimental_mode – tf.estimator.ModeKeys value indicating with mode will
be exported. Note that this feature is experimental.






	Returns

	The path to the exported directory as a bytes object.



	Raises

	
	ValueError – if no serving_input_receiver_fn is provided, no


	export_outputs are provided, or no checkpoint can be found.













	
export_savedmodel(export_dir_base, serving_input_receiver_fn, hooks=None, assets_extra=None, as_text=False, checkpoint_path=None, strip_default_attrs=False)

	DEPRECATED FUNCTION

Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
This function has been renamed, use export_saved_model instead.






	
get_variable_names()

	Returns list of all variable names in this model.


	Returns

	List of names.



	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.










	
get_variable_value(name)

	Returns value of the variable given by name.


	Parameters

	name – string or a list of string, name of the tensor.



	Returns

	Numpy array - value of the tensor.



	Raises

	ValueError – If the Estimator has not produced a checkpoint yet.










	
latest_checkpoint()

	Finds the filename of the latest saved checkpoint file in model_dir.


	Returns

	The full path to the latest checkpoint or None if no checkpoint was
found.










	
model_fn

	Returns the model_fn which is bound to self.params.


	Returns

	def model_fn(features, labels, mode, config)



	Return type

	The model_fn with following signature










	
predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None, yield_single_examples=True)

	Yields predictions for given features.

Please note that interleaving two predict outputs does not work. See:
[issue/20506](
https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517)


	Parameters

	
	input_fn – A function that constructs the features. Prediction continues
until input_fn raises an end-of-input exception
(tf.errors.OutOfRangeError or StopIteration). See [Premade
Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:
* tf.data.Dataset object – Outputs of Dataset object must have


same constraints as below.





	features – A tf.Tensor or a dictionary of string feature name to
Tensor. features are consumed by model_fn. They should satisfy
the expectation of model_fn from inputs.


	A tuple, in which case
the first item is extracted as features.







	predict_keys – list of str, name of the keys to predict. It is used if
the tf.estimator.EstimatorSpec.predictions is a dict. If
predict_keys is used then rest of the predictions will be filtered
from the dictionary. If None, returns all.


	hooks – List of tf.train.SessionRunHook subclass instances. Used for
callbacks inside the prediction call.


	checkpoint_path – Path of a specific checkpoint to predict. If None, the
latest checkpoint in model_dir is used.  If there are no checkpoints
in model_dir, prediction is run with newly initialized Variables
instead of ones restored from checkpoint.


	yield_single_examples – If False, yields the whole batch as returned by
the model_fn instead of decomposing the batch into individual
elements. This is useful if model_fn returns some tensors whose first
dimension is not equal to the batch size.






	Yields

	Evaluated values of predictions tensors.



	Raises

	
	ValueError – If batch length of predictions is not the same and
yield_single_examples is True.


	ValueError – If there is a conflict between predict_keys and
predictions. For example if predict_keys is not None but
tf.estimator.EstimatorSpec.predictions is not a dict.













	
train(input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None)

	Trains a model given training data input_fn.

NOTE: If a given input_fn raises an OutOfRangeError, then all of
training will exit. The best practice is to make the training dataset repeat
forever, in order to perform model search for more than one iteration.


	Parameters

	
	input_fn – A function that provides input data for training as minibatches.
See [Premade Estimators](
https://tensorflow.org/guide/premade_estimators#create_input_functions)
for more information. The function should construct and return one of
the following:



	A tf.data.Dataset object: Outputs of Dataset object must
be a tuple (features, labels) with same constraints as below.


	A tuple (features, labels): Where features is a
tf.Tensor or a dictionary of string feature name to
Tensor and labels is a Tensor or a dictionary of string
label name to Tensor. Both features and labels are consumed by
model_fn. They should satisfy the expectation of model_fn from
inputs.










	hooks – List of tf.train.SessionRunHook subclass instances. Used
for callbacks inside the training loop.


	steps – Number of steps for which to train the model. If None,
train forever or train until input_fn generates the
tf.errors.OutOfRange error or StopIteration exception.
steps works incrementally. If you call two times train(steps=10)
then training occurs in total 20 steps. If OutOfRange or
StopIteration occurs in the middle, training stops before 20
steps. If you don’t want to have incremental behavior please set
max_steps instead. If set, max_steps must be None.


	max_steps – Number of total steps for which to train model. If
None, train forever or train until input_fn generates the
tf.errors.OutOfRange error or StopIteration exception.
If set, steps must be None. If OutOfRange or
StopIteration occurs in the middle, training stops before
max_steps steps. Two calls to train(steps=100) means 200 training
iterations. On the other hand, two calls to train(max_steps=100)
means that the second call will not do any iteration since first call
did all 100 steps.


	saving_listeners – list of CheckpointSaverListener objects. Used
for callbacks that run immediately before or after checkpoint savings.






	Returns

	self, for chaining.



	Raises

	
	ValueError – If both steps and max_steps are not None.


	ValueError – If either steps or max_steps <= 0.



















Evaluator

Measures adanet.Ensemble performance on a given dataset.


Evaluator


	
class adanet.Evaluator(input_fn, metric_name='adanet_loss', objective='minimize', steps=None)

	Evaluates candidate ensemble performance.


	
class Objective

	The Evaluator objective for the metric being optimized.


	Two objectives are currently supported:

	
	MINIMIZE: Lower is better for the metric being optimized.


	MAXIMIZE: Higher is better for the metric being optimized.













	
__init__(input_fn, metric_name='adanet_loss', objective='minimize', steps=None)

	Initializes a new Evaluator instance.


	Parameters

	
	input_fn – Input function returning a tuple of: features - Dictionary of
string feature name to Tensor. labels - Tensor of labels.


	metric_name – The name of the evaluation metrics to use when choosing the
best ensemble. Must refer to a valid evaluation metric.


	objective – Either Objective.MINIMIZE or Objective.MAXIMIZE.


	steps – Number of steps for which to evaluate the ensembles. If an
OutOfRangeError occurs, evaluation stops. If set to None, will iterate
the dataset until all inputs are exhausted.






	Returns

	An adanet.Evaluator instance.










	
evaluate(sess, ensemble_metrics)

	Evaluates the given AdaNet objectives on the data from input_fn.

The candidates are fed the same batches of features and labels as
provided by input_fn, and their losses are computed and summed over
steps batches.


	Parameters

	
	sess – Session instance with most recent variable values loaded.


	ensemble_metrics – A list dictionaries of tf.metrics for each candidate
ensemble.






	Returns

	List of evaluated metrics.










	
input_fn

	Return the input_fn.






	
metric_name

	Returns the name of the metric being optimized.






	
objective_fn

	Returns a fn which selects the best metric based on the objective.






	
steps

	Return the number of evaluation steps.












Keras

Experimental Keras API for training, evaluating, predicting, and serving
AdaNet models.


AutoEnsemble



Model




Summary

Extends tf.summary to power AdaNet’s TensorBoard integration.


Summary


	
class adanet.Summary

	Interface for writing summaries to Tensorboard.


	
audio(name, tensor, sample_rate, max_outputs=3, family=None, encoding=None, description=None)

	Writes an audio summary.


	Parameters

	
	name – A name for this summary. The summary tag used for TensorBoard will
be this name prefixed by any active name scopes.


	tensor – A Tensor representing audio data with shape [k, t, c], where k is
the number of audio clips, t is the number of frames, and c is the
number of channels. Elements should be floating-point values in [-1.0,
1.0]. Any of the dimensions may be statically unknown (i.e., None).


	sample_rate – An int or rank-0 int32 Tensor that represents the sample
rate, in Hz. Must be positive.


	max_outputs – Optional int or rank-0 integer Tensor. At most this many
audio clips will be emitted at each step. When more than max_outputs
many clips are provided, the first max_outputs many clips will be used
and the rest silently discarded.


	family – Optional; if provided, used as the prefix of the summary tag name,
which controls the tab name used for display on Tensorboard. DEPRECATED
in TF 2.


	encoding – Optional constant str for the desired encoding. Only “wav” is
currently supported, but this is not guaranteed to remain the default,
so if you want “wav” in particular, set this explicitly.


	description – Optional long-form description for this summary, as a
constant str. Markdown is supported. Defaults to empty.






	Returns

	A scalar Tensor of type string. The serialized tf.Summary protocol
buffer.










	
histogram(name, values, family=None, buckets=None, description=None)

	Outputs a tf.Summary protocol buffer with a histogram.

Adding a histogram summary makes it possible to visualize your data’s
distribution in TensorBoard. You can see a detailed explanation of the
TensorBoard histogram dashboard
[here](https://www.tensorflow.org/get_started/tensorboard_histograms).

The generated [tf.Summary](
tensorflow/core/framework/summary.proto)
has one summary value containing a histogram for values.

This op reports an InvalidArgument error if any value is not finite.


	Parameters

	
	name – A name for this summary. The summary tag used for TensorBoard will
be this name prefixed by any active name scopes.


	values – A Tensor of any shape. Must be castable to float64.


	family – Optional; if provided, used as the prefix of the summary tag name,
which controls the tab name used for display on Tensorboard. DEPRECATED
in TF 2.


	buckets – Optional positive int. The output will have this many buckets,
except in two edge cases. If there is no data, then there are no
buckets. If there is data but all points have the same value, then there
is one bucket whose left and right endpoints are the same.


	description – Optional long-form description for this summary, as a
constant str. Markdown is supported. Defaults to empty.






	Returns

	A scalar Tensor of type string. The serialized tf.Summary protocol
buffer.










	
image(name, tensor, max_outputs=3, family=None, description=None)

	Outputs a tf.Summary protocol buffer with images.

The summary has up to max_outputs summary values containing images. The
images are built from tensor which must be 4-D with shape [batch_size,
height, width, channels] and where channels can be:


	1: tensor is interpreted as Grayscale.


	3: tensor is interpreted as RGB.


	4: tensor is interpreted as RGBA.




The images have the same number of channels as the input tensor. For float
input, the values are normalized one image at a time to fit in the range
[0, 255].  uint8 values are unchanged.  The op uses two different
normalization algorithms:


	If the input values are all positive, they are rescaled so the largest




one is 255.
*  If any input value is negative, the values are shifted so input value 0.0


is at 127.  They are then rescaled so that either the smallest value is 0,
or the largest one is 255.




The tag in the outputted tf.Summary.Value protobufs is generated based on
the
name, with a suffix depending on the max_outputs setting:


	If max_outputs is 1, the summary value tag is ‘name/image’.


	If max_outputs is greater than 1, the summary value tags are





generated sequentially as ‘name/image/0’, ‘name/image/1’, etc.





	Parameters

	
	name – A name for this summary. The summary tag used for TensorBoard will
be this name prefixed by any active name scopes.


	tensor – A Tensor representing pixel data with shape [k, h, w, c], where k
is the number of images, h and w are the height and width of the images,
and c is the number of channels, which should be 1, 2, 3, or 4
(grayscale, grayscale with alpha, RGB, RGBA). Any of the dimensions may
be statically unknown (i.e., None). Floating point data will be clipped
to the range [0,1).


	max_outputs – Optional int or rank-0 integer Tensor. At most this many
images will be emitted at each step. When more than max_outputs many
images are provided, the first max_outputs many images will be used and
the rest silently discarded.


	family – Optional; if provided, used as the prefix of the summary tag name,
which controls the tab name used for display on Tensorboard. DEPRECATED
in TF 2.


	description – Optional long-form description for this summary, as a
constant str. Markdown is supported. Defaults to empty.






	Returns

	A scalar Tensor of type string. The serialized tf.Summary protocol
buffer.










	
scalar(name, tensor, family=None, description=None)

	Outputs a tf.Summary protocol buffer containing a single scalar value.

The generated tf.Summary has a Tensor.proto containing the input Tensor.


	Parameters

	
	name – A name for this summary. The summary tag used for TensorBoard will
be this name prefixed by any active name scopes.


	tensor – A real numeric scalar value, convertible to a float32 Tensor.


	family – Optional; if provided, used as the prefix of the summary tag name,
which controls the tab name used for display on Tensorboard. DEPRECATED
in TF 2.


	description – Optional long-form description for this summary, as a
constant str. Markdown is supported. Defaults to empty.






	Returns

	A scalar Tensor of type string. Which contains a tf.Summary
protobuf.



	Raises

	ValueError – If tensor has the wrong shape or type.
















ReportMaterializer


ReportMaterializer


	
class adanet.ReportMaterializer(input_fn, steps=None)

	Materializes reports.

Specifically it materializes a subnetwork’s adanet.subnetwork.Report
instances into adanet.subnetwork.MaterializedReport instances.

Requires an input function input_fn that returns a tuple of:


	features: Dictionary of string feature name to Tensor.


	labels: Tensor of labels.





	Parameters

	
	input_fn – The input function.


	steps – Number of steps for which to materialize the ensembles. If an
OutOfRangeError occurs, materialization stops. If set to None, will
iterate the dataset until all inputs are exhausted.






	Returns

	A ReportMaterializer instance.






	
input_fn

	Returns the input_fn that materialize_subnetwork_reports would run on.

Even though this property appears to be unused, it would be used to build
the AdaNet model graph inside AdaNet estimator.train(). After the graph is
built, the queue_runners are started and the initializers are run,
AdaNet estimator.train() passes its tf.Session as an argument to
materialize_subnetwork_reports(), thus indirectly making input_fn
available to materialize_subnetwork_reports.






	
materialize_subnetwork_reports(sess, iteration_number, subnetwork_reports, included_subnetwork_names)

	Materializes the Tensor objects in subnetwork_reports using sess.

This converts the Tensors in subnetwork_reports to ndarrays, logs the
progress, converts the ndarrays to python primitives, then packages them
into adanet.subnetwork.MaterializedReports.


	Parameters

	
	sess – Session instance with most recent variable values loaded.


	iteration_number – Integer iteration number.


	subnetwork_reports – Dict mapping string names to subnetwork.Report
objects to be materialized.


	included_subnetwork_names – List of string names of the
`subnetwork.Report`s that are included in the final ensemble.






	Returns

	List of adanet.subnetwork.MaterializedReport objects.










	
steps

	Return the number of steps.
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adanet.ensemble

Defines built-in ensemble methods and interfaces for custom ensembles.


Ensembles

Interfaces and containers for defining ensembles.


Ensemble


	
class adanet.ensemble.Ensemble[source]

	An abstract ensemble of subnetworks.


	
logits

	Ensemble logits tf.Tensor.






	
predictions

	Optional dict of Ensemble predictions to be merged in EstimatorSpec.

These will be additional (over the default included by the head) predictions
which will be included in the EstimatorSpec in predictions and
export_outputs (wrapped as PredictOutput).






	
subnetworks

	Returns an ordered Iterable of the ensemble’s subnetworks.











ComplexityRegularized


	
class adanet.ensemble.ComplexityRegularized[source]

	An AdaNet ensemble where subnetworks are regularized by model complexity.

Hence an ensemble is a collection of subnetworks which forms a neural network
through the weighted sum of their outputs:


\[F(x) = \sum_{i=1}^{N}w_ih_i(x) + b\]


	Parameters

	
	weighted_subnetworks – List of adanet.ensemble.WeightedSubnetwork
instances that form this ensemble. Ordered from first to most recent.


	bias – Bias term tf.Tensor or dict of string to bias term
tf.Tensor (for multi-head) for the ensemble’s logits.


	logits – Logits tf.Tensor or dict of string to logits
tf.Tensor (for multi-head). The result of the function f as
defined in Section 5.1 which is the sum of the logits of all
adanet.WeightedSubnetwork instances in ensemble.


	subnetworks – List of adanet.subnetwork.Subnetwork instances that
form this ensemble. This is kept together with weighted_subnetworks for
legacy reasons.


	complexity_regularization – Regularization to be added in the Adanet loss.






	Returns

	An adanet.ensemble.Weighted instance.











MeanEnsemble


	
class adanet.ensemble.MeanEnsemble[source]

	Mean ensemble.


	
logits

	Logits tf.Tensor or dict of string to logits
tf.Tensor (for multi-head).






	
subnetworks

	List of adanet.subnetwork.Subnetwork instances that
form this ensemble.






	
predictions

	Optional dict mapping prediction keys to Tensors. MeanEnsembler
can export mean_last_layer if the subnetworks have the last_layer of the
same dimension.











MixtureWeightType


	
class adanet.ensemble.MixtureWeightType[source]

	Mixture weight types available for learning subnetwork contributions.

The following mixture weight types are defined:


	SCALAR: Produces a rank 0 Tensor mixture weight.


	VECTOR: Produces a rank 1 Tensor mixture weight.


	MATRIX: Produces a rank 2 Tensor mixture weight.










WeightedSubnetwork


	
class adanet.ensemble.WeightedSubnetwork[source]

	An AdaNet weighted subnetwork.

A weighted subnetwork is a weight applied to a subnetwork’s last layer
or logits (depending on the mixture weights type).


	Parameters

	
	name – String name of subnetwork as defined by its
adanet.subnetwork.Builder.


	iteration_number – Integer iteration when the subnetwork was created.


	weight – The weight tf.Tensor or dict of string to weight
tf.Tensor (for multi-head) to apply to this subnetwork. The
AdaNet paper refers to this weight as \(w\) in Equations (4), (5),
and (6).


	logits – The output tf.Tensor or dict of string to weight
tf.Tensor (for multi-head) after the matrix multiplication of
weight and the subnetwork’s last_layer. The output’s shape
is [batch_size, logits_dimension]. It is equivalent to a linear logits
layer in a neural network.


	subnetwork – The adanet.subnetwork.Subnetwork to weight.






	Returns

	An adanet.ensemble.WeightedSubnetwork object.












Ensemblers

Ensemble learning definitions.


Ensembler


	
class adanet.ensemble.Ensembler[source]

	An abstract ensembler.


	
build_ensemble(subnetworks, previous_ensemble_subnetworks, features, labels, logits_dimension, training, iteration_step, summary, previous_ensemble, previous_iteration_checkpoint)[source]

	Builds an ensemble of subnetworks.

Accessing the global step via tf.train.get_or_create_global_step()
or tf.train.get_global_step() within this scope will return an
incrementable iteration step since the beginning of the iteration.


	Parameters

	
	subnetworks – Ordered iterable of adanet.subnetwork.Subnetwork
instances to ensemble. Must have at least one element.


	previous_ensemble_subnetworks – Ordered iterable of
adanet.subnetwork.Subnetwork instances present in previous
ensemble to be used. The subnetworks from previous_ensemble not
included in this list should be pruned. Can be set to None or empty.


	features – Input dict of tf.Tensor objects.


	labels – Labels tf.Tensor or a dictionary of string label name to
tf.Tensor (for multi-head). Can be None.


	logits_dimension – Size of the last dimension of the logits
tf.Tensor. Typically, logits have for shape [batch_size,
logits_dimension].


	training – A python boolean indicating whether the graph is in training
mode or prediction mode.


	iteration_step – Integer tf.Tensor representing the step since the
beginning of the current iteration, as opposed to the global step.


	summary – An adanet.Summary for scoping summaries to individual
ensembles in Tensorboard. Using tf.summary() within this scope
will use this adanet.Summary under the hood.


	previous_ensemble – The best adanet.Ensemble from iteration t-1.
The created subnetwork will extend the previous ensemble to form the
adanet.Ensemble at iteration t.


	previous_iteration_checkpoint – The tf.train.Checkpoint object associated
with the previous iteration.






	Returns

	An adanet.ensemble.Ensemble subclass instance.










	
build_train_op(ensemble, loss, var_list, labels, iteration_step, summary, previous_ensemble)[source]

	Returns an op for training an ensemble.

Accessing the global step via tf.train.get_or_create_global_step()
or tf.train.get_global_step() within this scope will return an
incrementable iteration step since the beginning of the iteration.


	Parameters

	
	ensemble – The adanet.ensemble.Ensemble subclass instance returned
by this instance’s build_ensemble().


	loss – A tf.Tensor containing the ensemble’s loss to minimize.


	var_list – List of ensemble tf.Variable parameters to update as
part of the training operation.


	labels – Labels tf.Tensor or a dictionary of string label name to
tf.Tensor (for multi-head).


	iteration_step – Integer tf.Tensor representing the step since the
beginning of the current iteration, as opposed to the global step.


	summary – An adanet.Summary for scoping summaries to individual
ensembles in Tensorboard. Using tf.summary within this scope
will use this adanet.Summary under the hood.


	previous_ensemble – The best adanet.ensemble.Ensemble from the
previous iteration.






	Returns

	Either a train op or an adanet.ensemble.TrainOpSpec.










	
name

	This ensembler’s unique string name.











ComplexityRegularizedEnsembler


	
class adanet.ensemble.ComplexityRegularizedEnsembler(optimizer=None, mixture_weight_type='scalar', mixture_weight_initializer=None, warm_start_mixture_weights=False, model_dir=None, adanet_lambda=0.0, adanet_beta=0.0, use_bias=False, name=None)[source]

	The AdaNet algorithm implemented as an adanet.ensemble.Ensembler.

The AdaNet algorithm was introduced in the [Cortes et al. ICML 2017] paper:
https://arxiv.org/abs/1607.01097.

The AdaNet algorithm uses a weak learning algorithm to iteratively generate a
set of candidate subnetworks that attempt to minimize the loss function
defined in Equation (4) as part of an ensemble. At the end of each iteration,
the best candidate is chosen based on its ensemble’s complexity-regularized
train loss. New subnetworks are allowed to use any subnetwork weights within
the previous iteration’s ensemble in order to improve upon them. If the
complexity-regularized loss of the new ensemble, as defined in Equation (4),
is less than that of the previous iteration’s ensemble, the AdaNet algorithm
continues onto the next iteration.

AdaNet attempts to minimize the following loss function to learn the mixture
weights \(w\) of each subnetwork \(h\) in the ensemble with
differentiable convex non-increasing surrogate loss function \(\Phi\):

Equation (4):


\[F(w) = \frac{1}{m} \sum_{i=1}^{m} \Phi \left(\sum_{j=1}^{N}w_jh_j(x_i),
y_i \right) + \sum_{j=1}^{N} \left(\lambda r(h_j) + \beta \right) |w_j|\]

with \(\lambda >= 0\) and \(\beta >= 0\).


	Parameters

	
	optimizer – String, tf.train.Optimizer object, or callable that
creates the optimizer to use for training the ensemble weights. If left
as None, tf.no_op() is used instead.


	mixture_weight_type – The adanet.ensemble.MixtureWeightType defining
which mixture weight type to learn on top of the subnetworks’ logits.


	mixture_weight_initializer – The initializer for mixture_weights. When
None, the default is different according to
mixture_weight_type:



	SCALAR initializes to \(1/N\) where \(N\) is the
number of subnetworks in the ensemble giving a uniform average.


	VECTOR initializes each entry to \(1/N\) where \(N\)
is the number of subnetworks in the ensemble giving a uniform average.


	MATRIX uses tf.zeros_initializer().










	warm_start_mixture_weights – Whether, at the beginning of an iteration, to
initialize the mixture weights of the subnetworks from the previous
ensemble to their learned value at the previous iteration, as opposed to
retraining them from scratch. Takes precedence over the value for
mixture_weight_initializer for subnetworks from previous
iterations.


	model_dir – The model dir to use for warm-starting mixture weights and bias
at the logit layer. Ignored if warm_start_mixture_weights is
False.


	adanet_lambda – Float multiplier \(\lambda\) for applying \(L1\)
regularization to subnetworks’ mixture weights \(w\) in the ensemble
proportional to their complexity. See Equation (4) in the AdaNet paper.


	adanet_beta – Float \(L1\) regularization multiplier \(\beta\) to apply
equally to all subnetworks’ weights \(w\) in the ensemble regardless of
their complexity. See Equation (4) in the AdaNet paper.


	use_bias – Whether to add a bias term to the ensemble’s logits.


	name – Optional name for the ensembler. Defaults to ‘complexity_regularized’.






	Returns

	An adanet.ensemble.ComplexityRegularizedEnsembler instance.



	Raises

	
	ValueError – if warm_start_mixture_weights is True but


	model_dir is None.









	
build_ensemble(subnetworks, previous_ensemble_subnetworks, features, labels, logits_dimension, training, iteration_step, summary, previous_ensemble, previous_iteration_checkpoint=None)[source]

	Builds an ensemble of subnetworks.

Accessing the global step via tf.train.get_or_create_global_step()
or tf.train.get_global_step() within this scope will return an
incrementable iteration step since the beginning of the iteration.


	Parameters

	
	subnetworks – Ordered iterable of adanet.subnetwork.Subnetwork
instances to ensemble. Must have at least one element.


	previous_ensemble_subnetworks – Ordered iterable of
adanet.subnetwork.Subnetwork instances present in previous
ensemble to be used. The subnetworks from previous_ensemble not
included in this list should be pruned. Can be set to None or empty.


	features – Input dict of tf.Tensor objects.


	labels – Labels tf.Tensor or a dictionary of string label name to
tf.Tensor (for multi-head). Can be None.


	logits_dimension – Size of the last dimension of the logits
tf.Tensor. Typically, logits have for shape [batch_size,
logits_dimension].


	training – A python boolean indicating whether the graph is in training
mode or prediction mode.


	iteration_step – Integer tf.Tensor representing the step since the
beginning of the current iteration, as opposed to the global step.


	summary – An adanet.Summary for scoping summaries to individual
ensembles in Tensorboard. Using tf.summary() within this scope
will use this adanet.Summary under the hood.


	previous_ensemble – The best adanet.Ensemble from iteration t-1.
The created subnetwork will extend the previous ensemble to form the
adanet.Ensemble at iteration t.


	previous_iteration_checkpoint – The tf.train.Checkpoint object associated
with the previous iteration.






	Returns

	An adanet.ensemble.Ensemble subclass instance.










	
build_train_op(ensemble, loss, var_list, labels, iteration_step, summary, previous_ensemble)[source]

	Returns an op for training an ensemble.

Accessing the global step via tf.train.get_or_create_global_step()
or tf.train.get_global_step() within this scope will return an
incrementable iteration step since the beginning of the iteration.


	Parameters

	
	ensemble – The adanet.ensemble.Ensemble subclass instance returned
by this instance’s build_ensemble().


	loss – A tf.Tensor containing the ensemble’s loss to minimize.


	var_list – List of ensemble tf.Variable parameters to update as
part of the training operation.


	labels – Labels tf.Tensor or a dictionary of string label name to
tf.Tensor (for multi-head).


	iteration_step – Integer tf.Tensor representing the step since the
beginning of the current iteration, as opposed to the global step.


	summary – An adanet.Summary for scoping summaries to individual
ensembles in Tensorboard. Using tf.summary within this scope
will use this adanet.Summary under the hood.


	previous_ensemble – The best adanet.ensemble.Ensemble from the
previous iteration.






	Returns

	Either a train op or an adanet.ensemble.TrainOpSpec.










	
name

	This ensembler’s unique string name.











MeanEnsembler


	
class adanet.ensemble.MeanEnsembler(name=None, add_mean_last_layer_predictions=False)[source]

	Ensembler that takes the mean of logits returned by its subnetworks.


	
name

	Optional name for the ensembler. Defaults to ‘complexity_regularized’.






	
add_mean_last_layer_predictions

	Set to True to add mean of last_layer in
subnetworks in estimator’s predictions and export outputs.






	
build_ensemble(subnetworks, previous_ensemble_subnetworks, features, labels, logits_dimension, training, iteration_step, summary, previous_ensemble, previous_iteration_checkpoint)[source]

	Builds an ensemble of subnetworks.

Accessing the global step via tf.train.get_or_create_global_step()
or tf.train.get_global_step() within this scope will return an
incrementable iteration step since the beginning of the iteration.


	Parameters

	
	subnetworks – Ordered iterable of adanet.subnetwork.Subnetwork
instances to ensemble. Must have at least one element.


	previous_ensemble_subnetworks – Ordered iterable of
adanet.subnetwork.Subnetwork instances present in previous
ensemble to be used. The subnetworks from previous_ensemble not
included in this list should be pruned. Can be set to None or empty.


	features – Input dict of tf.Tensor objects.


	labels – Labels tf.Tensor or a dictionary of string label name to
tf.Tensor (for multi-head). Can be None.


	logits_dimension – Size of the last dimension of the logits
tf.Tensor. Typically, logits have for shape [batch_size,
logits_dimension].


	training – A python boolean indicating whether the graph is in training
mode or prediction mode.


	iteration_step – Integer tf.Tensor representing the step since the
beginning of the current iteration, as opposed to the global step.


	summary – An adanet.Summary for scoping summaries to individual
ensembles in Tensorboard. Using tf.summary() within this scope
will use this adanet.Summary under the hood.


	previous_ensemble – The best adanet.Ensemble from iteration t-1.
The created subnetwork will extend the previous ensemble to form the
adanet.Ensemble at iteration t.


	previous_iteration_checkpoint – The tf.train.Checkpoint object associated
with the previous iteration.






	Returns

	An adanet.ensemble.Ensemble subclass instance.










	
build_train_op(ensemble, loss, var_list, labels, iteration_step, summary, previous_ensemble)[source]

	Returns an op for training an ensemble.

Accessing the global step via tf.train.get_or_create_global_step()
or tf.train.get_global_step() within this scope will return an
incrementable iteration step since the beginning of the iteration.


	Parameters

	
	ensemble – The adanet.ensemble.Ensemble subclass instance returned
by this instance’s build_ensemble().


	loss – A tf.Tensor containing the ensemble’s loss to minimize.


	var_list – List of ensemble tf.Variable parameters to update as
part of the training operation.


	labels – Labels tf.Tensor or a dictionary of string label name to
tf.Tensor (for multi-head).


	iteration_step – Integer tf.Tensor representing the step since the
beginning of the current iteration, as opposed to the global step.


	summary – An adanet.Summary for scoping summaries to individual
ensembles in Tensorboard. Using tf.summary within this scope
will use this adanet.Summary under the hood.


	previous_ensemble – The best adanet.ensemble.Ensemble from the
previous iteration.






	Returns

	Either a train op or an adanet.ensemble.TrainOpSpec.










	
name

	This ensembler’s unique string name.











TrainOpSpec


	
class adanet.ensemble.TrainOpSpec[source]

	A data structure for specifying ensembler training operations.


	Parameters

	
	train_op – Op for the training step.


	chief_hooks – Iterable of tf.train.SessionRunHook objects to run on
the chief worker during training.


	hooks – Iterable of tf.train.SessionRunHook objects to run on all
workers during training.






	Returns

	An adanet.ensemble.TrainOpSpec object.












Strategies

Ensemble strategies for grouping subnetworks.


Strategy


	
class adanet.ensemble.Strategy[source]

	An abstract ensemble strategy.


	
generate_ensemble_candidates(subnetwork_builders, previous_ensemble_subnetwork_builders)[source]

	Generates ensemble candidates to search over this iteration.


	Parameters

	
	subnetwork_builders – Candidate adanet.subnetwork.Builder
instances for this iteration.


	previous_ensemble_subnetwork_builders – adanet.subnetwork.Builder
instances from the previous ensemble. Including only a subset of these
in a returned adanet.ensemble.Candidate is equivalent to
pruning the previous ensemble.






	Returns

	An iterable of adanet.ensemble.Candidate instances to train and
consider this iteration.















SoloStrategy


	
class adanet.ensemble.SoloStrategy[source]

	Produces a model composed of a single subnetwork.

An ensemble of one.

This is effectively the same as pruning all previous ensemble subnetworks,
and only adding one subnetwork candidate to the ensemble.


	
generate_ensemble_candidates(subnetwork_builders, previous_ensemble_subnetwork_builders)[source]

	Generates ensemble candidates to search over this iteration.


	Parameters

	
	subnetwork_builders – Candidate adanet.subnetwork.Builder
instances for this iteration.


	previous_ensemble_subnetwork_builders – adanet.subnetwork.Builder
instances from the previous ensemble. Including only a subset of these
in a returned adanet.ensemble.Candidate is equivalent to
pruning the previous ensemble.






	Returns

	An iterable of adanet.ensemble.Candidate instances to train and
consider this iteration.















GrowStrategy


	
class adanet.ensemble.GrowStrategy[source]

	Greedily grows an ensemble, one subnetwork at a time.


	
generate_ensemble_candidates(subnetwork_builders, previous_ensemble_subnetwork_builders)[source]

	Generates ensemble candidates to search over this iteration.


	Parameters

	
	subnetwork_builders – Candidate adanet.subnetwork.Builder
instances for this iteration.


	previous_ensemble_subnetwork_builders – adanet.subnetwork.Builder
instances from the previous ensemble. Including only a subset of these
in a returned adanet.ensemble.Candidate is equivalent to
pruning the previous ensemble.






	Returns

	An iterable of adanet.ensemble.Candidate instances to train and
consider this iteration.















AllStrategy


	
class adanet.ensemble.AllStrategy[source]

	Ensembles all subnetworks from the current iteration.


	
generate_ensemble_candidates(subnetwork_builders, previous_ensemble_subnetwork_builders)[source]

	Generates ensemble candidates to search over this iteration.


	Parameters

	
	subnetwork_builders – Candidate adanet.subnetwork.Builder
instances for this iteration.


	previous_ensemble_subnetwork_builders – adanet.subnetwork.Builder
instances from the previous ensemble. Including only a subset of these
in a returned adanet.ensemble.Candidate is equivalent to
pruning the previous ensemble.






	Returns

	An iterable of adanet.ensemble.Candidate instances to train and
consider this iteration.















Candidate


	
class adanet.ensemble.Candidate[source]

	An ensemble candidate found during the search phase.


	Parameters

	
	name – String name of this ensemble candidate.


	subnetwork_builders – Candidate adanet.subnetwork.Builder instances
to include in the ensemble.


	previous_ensemble_subnetwork_builders – adanet.subnetwork.Builder
instances to include from the previous ensemble.
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adanet.subnetwork

Low-level APIs for defining custom subnetworks and search spaces.


Generators

Interfaces and containers for defining subnetworks, search spaces, and search algorithms.


Subnetwork


	
class adanet.subnetwork.Subnetwork[source]

	An AdaNet subnetwork.

In the AdaNet paper, an adanet.subnetwork.Subnetwork is are called a
subnetwork, and indicated by h. A collection of weighted subnetworks form
an AdaNet ensemble.


	Parameters

	
	last_layer – tf.Tensor output or dict of string to
tf.Tensor outputs (for multi-head) of the last layer of the
subnetwork, i.e the layer before the logits layer. When the mixture weight
type is MATRIX, the AdaNet algorithm takes care of computing
ensemble mixture weights matrices (one per subnetwork) that multiply the
various last layers of the ensemble’s subnetworks, and regularize them
using their subnetwork’s complexity. This field is represented by h in
the AdaNet paper.


	logits – tf.Tensor logits or dict of string to tf.Tensor
logits (for multi-head) for training the subnetwork. These logits are not
used in the ensemble’s outputs if the mixture weight type is
MATRIX, instead AdaNet learns its own logits (mixture weights)
from the subnetwork’s last_layers with complexity regularization. The
logits are used in the ensemble only when the mixture weights type is
SCALAR or VECTOR. Even though the logits are not used
in the ensemble in some cases, they should always be supplied as adanet
uses the logits to train the subnetworks.


	complexity – A scalar tf.Tensor representing the complexity of the
subnetwork’s architecture. It is used for choosing the best subnetwork at
each iteration, and for regularizing the weighted outputs of more complex
subnetworks.


	persisted_tensors – DEPRECATED. See shared. Optional nested dictionary of
string to tf.Tensor to persist across iterations. At the end of
an iteration, the tf.Tensor instances will be available to
subnetworks in the next iterations, whereas others that are not part of
the Subnetwork will be pruned. This allows later
adanet.subnetwork.Subnetwork instances to dynamically build
upon arbitrary tf.Tensors from previous
adanet.subnetwork.Subnetwork instances.


	shared – Optional Python object(s), primitive(s), or function(s) to share
with subnetworks within the same iteration or in future iterations.


	local_init_ops – Iterable of tf.Operation objects to run to
initialize local variables.






	Returns

	A validated adanet.subnetwork.Subnetwork object.



	Raises

	
	ValueError – If last_layer is None.


	ValueError – If logits is None.


	ValueError – If logits is a dict but last_layer is not.


	ValueError – If last_layer is a dict but logits is not.


	ValueError – If complexity is None.


	ValueError – If persisted_tensors is present but not a dictionary.


	ValueError – If persisted_tensors contains an empty nested dictionary.









	
deprecation = <module 'tensorflow.python.util.deprecation' from '/home/docs/checkouts/readthedocs.org/user_builds/adanet/envs/latest/lib/python3.7/site-packages/tensorflow/python/util/deprecation.py'>

	









TrainOpSpec


	
class adanet.subnetwork.TrainOpSpec[source]

	A data structure for specifying training operations.


	Parameters

	
	train_op – Op for the training step.


	chief_hooks – Iterable of tf.train.SessionRunHook objects to run on
the chief worker during training.


	hooks – Iterable of tf.train.SessionRunHook objects to run on all
workers during training.






	Returns

	A adanet.subnetwork.TrainOpSpec object.











Builder


	
class adanet.subnetwork.Builder[source]

	Bases: object

Interface for a subnetwork builder.

Given features, labels, and the best ensemble of subnetworks at iteration
t-1, a Builder creates a Subnetwork to add to a candidate
ensemble at iteration t. These candidate ensembles are evaluated against one
another at the end of the iteration, and the best one is selected based on its
complexity-regularized loss.


	
build_subnetwork(features, labels, logits_dimension, training, iteration_step, summary, previous_ensemble=None)[source]

	Returns the candidate Subnetwork to add to the ensemble.

This method will be called only once before
build_subnetwork_train_op(). This method should construct the
candidate subnetwork’s graph operations and variables.

Accessing the global step via tf.train.get_or_create_global_step()
or tf.train.get_global_step() within this scope will return an
incrementable iteration step since the beginning of the iteration.


	Parameters

	
	features – Input dict of tf.Tensor objects.


	labels – Labels tf.Tensor or a dictionary of string label name to
tf.Tensor (for multi-head). Can be None.


	logits_dimension – Size of the last dimension of the logits
tf.Tensor. Typically, logits have for shape [batch_size,
logits_dimension].


	training – A python boolean indicating whether the graph is in training
mode or prediction mode.


	iteration_step – Integer tf.Tensor representing the step since the
beginning of the current iteration, as opposed to the global step.


	summary – An adanet.Summary for scoping summaries to individual
subnetworks in Tensorboard. Using tf.summary() within this scope
will use this adanet.Summary under the hood.


	previous_ensemble – The best adanet.Ensemble from iteration t-1.
The created subnetwork will extend the previous ensemble to form the
adanet.Ensemble at iteration t.






	Returns

	An adanet.subnetwork.Subnetwork instance.










	
build_subnetwork_report()[source]

	Returns a subnetwork.Report to materialize and record.

This method will be called once after build_subnetwork().
Do NOT depend on variables created in build_subnetwork_train_op(),
because they are not called before build_subnetwork_report() is
called.

If it returns None, AdaNet records the name and standard eval metrics.






	
build_subnetwork_train_op(subnetwork, loss, var_list, labels, iteration_step, summary, previous_ensemble)[source]

	Returns an op for training a new subnetwork.

This method will be called once after build_subnetwork().

Accessing the global step via tf.train.get_or_create_global_step()
or
tf.train.get_global_step() within this scope will return an
incrementable
iteration step since the beginning of the iteration.


	Parameters

	
	subnetwork – Newest subnetwork, that is not part of the
previous_ensemble.


	loss – A tf.Tensor containing the subnetwork’s loss to minimize.


	var_list – List of subnetwork tf.Variable parameters to update as
part of the training operation.


	labels – Labels tf.Tensor or a dictionary of string label name to
tf.Tensor (for multi-head).


	iteration_step – Integer tf.Tensor representing the step since the
beginning of the current iteration, as opposed to the global step.


	summary – An adanet.Summary for scoping summaries to individual
subnetworks in Tensorboard. Using tf.summary within this scope will
use this adanet.Summary under the hood.


	previous_ensemble – The best Ensemble from iteration t-1. The created
subnetwork will extend the previous ensemble to form the Ensemble at
iteration t. Is None for iteration 0.






	Returns

	Either a train op or an adanet.subnetwork.TrainOpSpec.










	
name

	Returns the unique name of this subnetwork within an iteration.


	Returns

	String name of this subnetwork.















Generator


	
class adanet.subnetwork.Generator[source]

	Bases: object

Interface for a candidate subnetwork generator.

Given the ensemble of subnetworks at iteration t-1, this object is
responsible for generating the set of candidate subnetworks for iteration t
that minimize the objective as part of an ensemble.


	
generate_candidates(previous_ensemble, iteration_number, previous_ensemble_reports, all_reports, config)[source]

	Generates adanet.subnetwork.Builder instances for an iteration.

NOTE: Every call to generate_candidates() must be deterministic for
the given arguments.


	Parameters

	
	previous_ensemble – The best adanet.Ensemble from iteration t-1.
DEPRECATED. We are transitioning away from the use of previous_ensemble
in generate_candidates. New Generators should not use
previous_ensemble in their implementation of generate_candidates –
please only use iteration_number, previous_ensemble_reports and
all_reports.


	iteration_number – Python integer AdaNet iteration t, starting from 0.


	previous_ensemble_reports – List of
adanet.subnetwork.MaterializedReport instances corresponding to
the Builders composing adanet.Ensemble from iteration t-1. The
first element in the list corresponds to the Builder added in the
first iteration. If a adanet.subnetwork.MaterializedReport is
not supplied to the estimator, previous_ensemble_report is None.


	all_reports – List of adanet.subnetwork.MaterializedReport
instances. If an adanet.subnetwork.ReportMaterializer is not
supplied to the estimator, all_reports is None. If
adanet.subnetwork.ReportMaterializer is supplied to the
estimator and t=0, all_reports is an empty List. Otherwise,
all_reports is a sequence of Lists. Each element of the sequence is a
List containing all the adanet.subnetwork.MaterializedReport
instances in an AdaNet iteration, starting from iteration 0, and
ending at iteration t-1.


	config – The current tf.estimator.RunConfig object to configure
the runtime settings.






	Returns

	A list of adanet.subnetwork.Builder instances.
















Reports

Containers for metadata about trained subnetworks.


Report


	
class adanet.subnetwork.Report[source]

	A container for data to be collected about a Subnetwork.


	Parameters

	
	hparams – A dict mapping strings to python strings, ints, bools, or floats.
It is meant to contain the constants that define the
adanet.subnetwork.Builder, such as dropout, number of layers, or
initial learning rate.


	attributes – A dict mapping strings to rank 0 Tensors of dtype string, int32,
or float32. It is meant to contain properties that may or may not change
over the course of training the adanet.subnetwork.Subnetwork,
such as the number of parameters, the Lipschitz constant, the \(L2\)
norm of the weights, or learning rate at materialization time.


	metrics – Dict of metric results keyed by name. The values of the dict are
the results of calling a metric function, namely a (metric_tensor,
update_op) tuple. metric_tensor should be evaluated without any impact
on state (typically is a pure computation results based on variables.).
For example, it should not trigger the update_op or requires any
input fetching. This is meant to contain metrics of interest, such as the
training loss, complexity regularized loss, or standard deviation of the
last layer outputs.






	Returns

	A validated adanet.subnetwork.Report object.



	Raises

	ValueError – If validation fails.











MaterializedReport


	
class adanet.subnetwork.MaterializedReport[source]

	Data collected about a adanet.subnetwork.Subnetwork.


	Parameters

	
	iteration_number – A python integer for the AdaNet iteration number, starting
from 0.


	name – A string, which is either the name of the corresponding Builder, or
“previous_ensemble” if it refers to the previous_ensemble.


	hparams – A dict mapping strings to python strings, ints, or floats. These
are constants passed from the author of the
adanet.subnetwork.Builder that was used to construct this
adanet.subnetwork.Subnetwork. It is meant to contain the
arguments that defined the adanet.subnetwork.Builder, such as
dropout, number of layers, or initial learning rate.


	attributes – A dict mapping strings to python strings, ints, bools, or
floats. These are python primitives that come from materialized Tensors;
these Tensors were defined by the author of the
adanet.subnetwork.Builder that was used
to construct this adanet.subnetwork.Subnetwork. It is meant to
contain properties that may or may not change over the course of
training the adanet.subnetwork.Subnetwork, such as the number of
parameters, the Lipschitz constant, or the \(L2\) norm of the weights.


	metrics – A dict mapping strings to python strings, ints, or floats. These
are python primitives that come from metrics that were evaluated on the
trained adanet.subnetwork.Subnetwork over some dataset; these
metrics were defined by the author of the
adanet.subnetwork.Builder that was used to construct this
adanet.subnetwork.Subnetwork. It is meant to contain
performance metrics or measures that could predict generalization, such
as the training loss, complexity regularized loss, or standard deviation
of the last layer outputs.


	included_in_final_ensemble – A boolean denoting whether the associated
adanet.subnetwork.Subnetwork was included in the ensemble at the
end of the AdaNet iteration.






	Returns

	An adanet.subnetwork.MaterializedReport object.
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adanet.distributed

The adanet.distributed package.

This package methods for distributing computation using the TensorFlow
computation graph.


PlacementStrategy


	
class adanet.distributed.PlacementStrategy[source]

	Abstract placement strategy for distributed training.

Given a cluster of workers, the placement strategy determines which subgraph
each worker constructs.


	
config

	Returns this strategy’s configuration.


	Returns

	The tf.estimator.RunConfig instance that defines the cluster.










	
should_build_ensemble(num_subnetworks)[source]

	Whether to build the ensemble on the current worker.


	Parameters

	num_subnetworks – Integer number of subnetworks to train in the current
iteration.



	Returns

	Boolean whether to build the ensemble on the current worker.










	
should_build_subnetwork(num_subnetworks, subnetwork_index)[source]

	Whether to build the given subnetwork on the current worker.


	Parameters

	
	num_subnetworks – Integer number of subnetworks to train in the current
iteration.


	subnetwork_index – Integer index of the subnetwork in the list of the
current iteration’s subnetworks.






	Returns

	Boolean whether to build the given subnetwork on the current worker.










	
should_train_subnetworks(num_subnetworks)[source]

	Whether to train subnetworks on the current worker.


	Parameters

	num_subnetworks – Integer number of subnetworks to train in the current
iteration.



	Returns

	Boolean whether to train subnetworks on the current worker.










	
subnetwork_devices(num_subnetworks, subnetwork_index)[source]

	A context for assigning subnetwork ops to devices.











ReplicationStrategy


	
class adanet.distributed.ReplicationStrategy[source]

	A simple strategy that replicates the same graph on every worker.

This strategy does not scale well as the number of subnetworks and workers
increases. For \(m\) workers, \(n\) parameter servers, and \(k\)
subnetworks, this strategy will scale with \(O(m)\) training speedup,
\(O(m*n*k)\) variable fetches from parameter servers, and \(O(k)\)
memory required per worker. Additionally there will be \(O(m)\) stale
gradients per subnetwork when training with asynchronous SGD.


	Returns

	A ReplicationStrategy instance for the current cluster.






	
should_build_ensemble(num_subnetworks)[source]

	Whether to build the ensemble on the current worker.


	Parameters

	num_subnetworks – Integer number of subnetworks to train in the current
iteration.



	Returns

	Boolean whether to build the ensemble on the current worker.










	
should_build_subnetwork(num_subnetworks, subnetwork_index)[source]

	Whether to build the given subnetwork on the current worker.


	Parameters

	
	num_subnetworks – Integer number of subnetworks to train in the current
iteration.


	subnetwork_index – Integer index of the subnetwork in the list of the
current iteration’s subnetworks.






	Returns

	Boolean whether to build the given subnetwork on the current worker.










	
should_train_subnetworks(num_subnetworks)[source]

	Whether to train subnetworks on the current worker.


	Parameters

	num_subnetworks – Integer number of subnetworks to train in the current
iteration.



	Returns

	Boolean whether to train subnetworks on the current worker.










	
subnetwork_devices(num_subnetworks, subnetwork_index)[source]

	A context for assigning subnetwork ops to devices.











RoundRobinStrategy


	
class adanet.distributed.RoundRobinStrategy(drop_remainder=False, dedicate_parameter_servers=True)[source]

	A strategy that round-robin assigns subgraphs to specific workers.

Specifically, it selects dedicated workers to only train ensemble variables,
and round-robin assigns subnetworks to dedicated subnetwork-training workers.

Unlike ReplicationStrategy, this strategy scales better with the
number of subnetworks, workers, and parameter servers. For \(m\) workers,
\(n\) parameter servers, and \(k\) subnetworks, this strategy will
scale with \(O(m/k)\) training speedup, \(O(m*n/k)\) variable fetches
from parameter servers, and \(O(1)\) memory required per worker.
Additionally, there will only be \(O(m/k)\) stale gradients per subnetwork
when training with asynchronous SGD, which reduces training instability versus
ReplicationStrategy.

When there are more workers than subnetworks, this strategy assigns
subnetworks to workers modulo the number of subnetworks.

Conversely, when there are more subnetworks than workers, this round robin
assigns subnetworks modulo the number of workers. So certain workers may end
up training more than one subnetwork.

This strategy gracefully handles scenarios when the number of subnetworks
does not perfectly divide the number of workers and vice-versa. It also
supports different numbers of subnetworks at different iterations, and
reloading training with a resized cluster.


	Parameters

	drop_remainder – Bool whether to drop remaining subnetworks that haven’t been
assigned to a worker in the remainder after perfect division of workers by
the current iteration’s num_subnetworks + 1. When True, each subnetwork
worker will only train a single subnetwork, and subnetworks that have not
been assigned to assigned to a worker are dropped. NOTE: This can result
in subnetworks not being assigned to any worker when
num_workers < num_subnetworks + 1. When False, remaining subnetworks
during the round-robin assignment will be placed on workers that already
have a subnetwork.



	Returns

	A RoundRobinStrategy instance for the current cluster.






	
should_build_ensemble(num_subnetworks)[source]

	Whether to build the ensemble on the current worker.


	Parameters

	num_subnetworks – Integer number of subnetworks to train in the current
iteration.



	Returns

	Boolean whether to build the ensemble on the current worker.










	
should_build_subnetwork(num_subnetworks, subnetwork_index)[source]

	Whether to build the given subnetwork on the current worker.


	Parameters

	
	num_subnetworks – Integer number of subnetworks to train in the current
iteration.


	subnetwork_index – Integer index of the subnetwork in the list of the
current iteration’s subnetworks.






	Returns

	Boolean whether to build the given subnetwork on the current worker.










	
should_train_subnetworks(num_subnetworks)[source]

	Whether to train subnetworks on the current worker.


	Parameters

	num_subnetworks – Integer number of subnetworks to train in the current
iteration.



	Returns

	Boolean whether to train subnetworks on the current worker.










	
subnetwork_devices(num_subnetworks, subnetwork_index)[source]

	A context for assigning subnetwork ops to devices.
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adanet.replay

Defines mechanisms for deterministically replaying an AdaNet model search.


Config


	
class adanet.replay.Config(best_ensemble_indices=None)[source]

	Defines how to deterministically replay an AdaNet model search.

Specifically, it reconstructs the previous model and trains its components
in the correct order without performing any search.


	Parameters

	best_ensemble_indices – A list of the best ensemble indices (one per
iteration).



	Returns

	An adanet.replay.Config instance.






	
best_ensemble_indices

	The best ensemble indices per iteration.






	
get_best_ensemble_index(iteration_number)[source]

	Returns the best ensemble index given an iteration number.
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  Source code for abc

# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) according to PEP 3119."""


def abstractmethod(funcobj):
    """A decorator indicating abstract methods.

    Requires that the metaclass is ABCMeta or derived from it.  A
    class that has a metaclass derived from ABCMeta cannot be
    instantiated unless all of its abstract methods are overridden.
    The abstract methods can be called using any of the normal
    'super' call mechanisms.

    Usage:

        class C(metaclass=ABCMeta):
            @abstractmethod
            def my_abstract_method(self, ...):
                ...
    """
    funcobj.__isabstractmethod__ = True
    return funcobj


class abstractclassmethod(classmethod):
    """A decorator indicating abstract classmethods.

    Similar to abstractmethod.

    Usage:

        class C(metaclass=ABCMeta):
            @abstractclassmethod
            def my_abstract_classmethod(cls, ...):
                ...

    'abstractclassmethod' is deprecated. Use 'classmethod' with
    'abstractmethod' instead.
    """

    __isabstractmethod__ = True

    def __init__(self, callable):
        callable.__isabstractmethod__ = True
        super().__init__(callable)


class abstractstaticmethod(staticmethod):
    """A decorator indicating abstract staticmethods.

    Similar to abstractmethod.

    Usage:

        class C(metaclass=ABCMeta):
            @abstractstaticmethod
            def my_abstract_staticmethod(...):
                ...

    'abstractstaticmethod' is deprecated. Use 'staticmethod' with
    'abstractmethod' instead.
    """

    __isabstractmethod__ = True

    def __init__(self, callable):
        callable.__isabstractmethod__ = True
        super().__init__(callable)


class abstractproperty(property):
    """A decorator indicating abstract properties.

    Requires that the metaclass is ABCMeta or derived from it.  A
    class that has a metaclass derived from ABCMeta cannot be
    instantiated unless all of its abstract properties are overridden.
    The abstract properties can be called using any of the normal
    'super' call mechanisms.

    Usage:

        class C(metaclass=ABCMeta):
            @abstractproperty
            def my_abstract_property(self):
                ...

    This defines a read-only property; you can also define a read-write
    abstract property using the 'long' form of property declaration:

        class C(metaclass=ABCMeta):
            def getx(self): ...
            def setx(self, value): ...
            x = abstractproperty(getx, setx)

    'abstractproperty' is deprecated. Use 'property' with 'abstractmethod'
    instead.
    """

    __isabstractmethod__ = True


try:
    from _abc import (get_cache_token, _abc_init, _abc_register,
                      _abc_instancecheck, _abc_subclasscheck, _get_dump,
                      _reset_registry, _reset_caches)
except ImportError:
    from _py_abc import ABCMeta, get_cache_token
    ABCMeta.__module__ = 'abc'
else:
    class ABCMeta(type):
        """Metaclass for defining Abstract Base Classes (ABCs).

        Use this metaclass to create an ABC.  An ABC can be subclassed
        directly, and then acts as a mix-in class.  You can also register
        unrelated concrete classes (even built-in classes) and unrelated
        ABCs as 'virtual subclasses' -- these and their descendants will
        be considered subclasses of the registering ABC by the built-in
        issubclass() function, but the registering ABC won't show up in
        their MRO (Method Resolution Order) nor will method
        implementations defined by the registering ABC be callable (not
        even via super()).
        """
        def __new__(mcls, name, bases, namespace, **kwargs):
            cls = super().__new__(mcls, name, bases, namespace, **kwargs)
            _abc_init(cls)
            return cls

        def register(cls, subclass):
            """Register a virtual subclass of an ABC.

            Returns the subclass, to allow usage as a class decorator.
            """
            return _abc_register(cls, subclass)

        def __instancecheck__(cls, instance):
            """Override for isinstance(instance, cls)."""
            return _abc_instancecheck(cls, instance)

        def __subclasscheck__(cls, subclass):
            """Override for issubclass(subclass, cls)."""
            return _abc_subclasscheck(cls, subclass)

        def _dump_registry(cls, file=None):
            """Debug helper to print the ABC registry."""
            print(f"Class: {cls.__module__}.{cls.__qualname__}", file=file)
            print(f"Inv. counter: {get_cache_token()}", file=file)
            (_abc_registry, _abc_cache, _abc_negative_cache,
             _abc_negative_cache_version) = _get_dump(cls)
            print(f"_abc_registry: {_abc_registry!r}", file=file)
            print(f"_abc_cache: {_abc_cache!r}", file=file)
            print(f"_abc_negative_cache: {_abc_negative_cache!r}", file=file)
            print(f"_abc_negative_cache_version: {_abc_negative_cache_version!r}",
                  file=file)

        def _abc_registry_clear(cls):
            """Clear the registry (for debugging or testing)."""
            _reset_registry(cls)

        def _abc_caches_clear(cls):
            """Clear the caches (for debugging or testing)."""
            _reset_caches(cls)


class ABC(metaclass=ABCMeta):
    """Helper class that provides a standard way to create an ABC using
    inheritance.
    """
    __slots__ = ()
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  All modules for which code is available

	abc

	adanet.autoensemble.common

	adanet.autoensemble.estimator

	adanet.core.estimator

	adanet.core.evaluator

	adanet.core.report_materializer

	adanet.core.summary

	adanet.core.tpu_estimator

	adanet.distributed.placement

	adanet.ensemble.ensembler

	adanet.ensemble.mean

	adanet.ensemble.strategy

	adanet.ensemble.weighted

	adanet.replay

	adanet.subnetwork.generator

	adanet.subnetwork.report

	tensorflow_estimator.python.estimator.estimator
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  Source code for adanet.replay

# Copyright 2019 The AdaNet Authors. All Rights Reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines mechanisms for deterministically replaying an AdaNet model search."""

# TODO: Add more detailed documentation.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os

import tensorflow.compat.v1 as tf


[docs]class Config(object):  # pylint: disable=g-classes-have-attributes
  # pyformat: disable
  """Defines how to deterministically replay an AdaNet model search.

  Specifically, it reconstructs the previous model and trains its components
  in the correct order without performing any search.

  Args:
    best_ensemble_indices: A list of the best ensemble indices (one per
      iteration).

  Returns:
    An :class:`adanet.replay.Config` instance.
  """
  # pyformat: enable

  def __init__(self, best_ensemble_indices=None):
    self._best_ensemble_indices = best_ensemble_indices

  @property
  def best_ensemble_indices(self):
    """The best ensemble indices per iteration."""
    return self._best_ensemble_indices

[docs]  def get_best_ensemble_index(self, iteration_number):
    """Returns the best ensemble index given an iteration number."""
    # If we are provided the list
    if (self._best_ensemble_indices
        and iteration_number < len(self._best_ensemble_indices)):
      return self._best_ensemble_indices[iteration_number]

    return None




__all__ = ["Config"]
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  Source code for adanet.autoensemble.common

"""Common utilities for AutoEnsemblers.

Copyright 2019 The AdaNet Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import inspect

from adanet import subnetwork as subnetwork_lib
from adanet import tf_compat

import tensorflow.compat.v2 as tf


def _default_logits(estimator_spec):
  from tensorflow.python.estimator.canned import prediction_keys  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top

  if isinstance(estimator_spec.predictions, dict):
    pred_keys = prediction_keys.PredictionKeys
    if pred_keys.LOGITS in estimator_spec.predictions:
      return estimator_spec.predictions[pred_keys.LOGITS]
    if pred_keys.PREDICTIONS in estimator_spec.predictions:
      return estimator_spec.predictions[pred_keys.PREDICTIONS]
  return estimator_spec.predictions


class _SecondaryTrainOpRunnerHook(tf_compat.SessionRunHook):
  """A hook for running a train op separate from the main session run call."""

  def __init__(self, train_op):
    """Initializes a `_SecondaryTrainOpRunnerHook`.

    Args:
      train_op: The secondary train op to execute before runs.
    """

    self._train_op = train_op

  def before_run(self, run_context):
    run_context.session.run(self._train_op)


[docs]class AutoEnsembleSubestimator(  # pylint: disable=g-classes-have-attributes
    collections.namedtuple("AutoEnsembleSubestimator",
                           ["estimator", "train_input_fn", "prediction_only"])):
  """A subestimator to train and consider for ensembling.

  Args:
    estimator: A `tf.estimator.Estimator` or `tf.estimator.tpu.TPUEstimator`
      instance to consider for ensembling.
    train_input_fn: A function that provides input data for training as
      minibatches. It can be used to implement ensemble methods like bootstrap
      aggregating (a.k.a bagging) where each subnetwork trains on different
      slices of the training data. The function should construct and return one
      of the following:
       * A `tf.data.Dataset` object: Outputs of `Dataset` object must be a tuple
         `(features, labels)` with same constraints as below. NOTE: A Dataset
           must return *at least* two batches before hitting the end-of-input,
           otherwise all of training terminates.
         TODO: Figure out how to handle single-batch datasets.
       * A tuple `(features, labels)`: Where `features` is a `tf.Tensor` or a
         dictionary of string feature name to `Tensor` and `labels` is a
         `Tensor` or a dictionary of string label name to `Tensor`. Both
         `features` and `labels` are consumed by `estimator#model_fn`. They
         should satisfy the expectation of `estimator#model_fn` from inputs.
     prediction_only: If set to True, only runs the subestimator in prediction
       mode.

  Returns:
    An `AutoEnsembleSubestimator` instance to be auto-ensembled.
  """

  # pylint: enable=g-classes-have-attributes

  def __new__(cls, estimator, train_input_fn=None, prediction_only=False):
    return super(AutoEnsembleSubestimator,
                 cls).__new__(cls, estimator, train_input_fn, prediction_only)



class _BuilderFromSubestimator(subnetwork_lib.Builder):
  """An `adanet.Builder` from a :class:`tf.estimator.Estimator`."""

  def __init__(self, name, subestimator, logits_fn, last_layer_fn, config):
    self._name = name
    self._subestimator = subestimator
    self._logits_fn = logits_fn
    self._last_layer_fn = last_layer_fn
    self._config = config

  @property
  def name(self):
    return self._name

  def _call_model_fn(self, subestimator, features, labels, mode, summary):
    with summary.current_scope():
      model_fn = subestimator.estimator.model_fn
      estimator_spec = model_fn(
          features=features, labels=labels, mode=mode, config=self._config)
      logits = self._logits_fn(estimator_spec=estimator_spec)
      last_layer = logits
      if self._last_layer_fn:
        last_layer = self._last_layer_fn(estimator_spec=estimator_spec)

      if estimator_spec.scaffold and estimator_spec.scaffold.local_init_op:
        local_init_op = estimator_spec.scaffold.local_init_op
      else:
        local_init_op = None

      train_op = subnetwork_lib.TrainOpSpec(
          estimator_spec.train_op,
          chief_hooks=estimator_spec.training_chief_hooks,
          hooks=estimator_spec.training_hooks)
    return logits, last_layer, train_op, local_init_op

  def build_subnetwork(self,
                       features,
                       labels,
                       logits_dimension,
                       training,
                       iteration_step,
                       summary,
                       previous_ensemble,
                       config=None):
    # We don't need an EVAL mode since AdaNet takes care of evaluation for us.
    subestimator = self._subestimator(config)
    mode = tf.estimator.ModeKeys.PREDICT
    if training and not subestimator.prediction_only:
      mode = tf.estimator.ModeKeys.TRAIN

    # Call in template to ensure that variables are created once and reused.
    call_model_fn_template = tf.compat.v1.make_template("model_fn",
                                                        self._call_model_fn)
    subestimator_features, subestimator_labels = features, labels
    local_init_ops = []
    if training and subestimator.train_input_fn:
      # TODO: Consider tensorflow_estimator/python/estimator/util.py.
      inputs = subestimator.train_input_fn()
      if isinstance(inputs, (tf_compat.DatasetV1, tf_compat.DatasetV2)):
        subestimator_features, subestimator_labels = (
            tf_compat.make_one_shot_iterator(inputs).get_next())
      else:
        subestimator_features, subestimator_labels = inputs

      # Construct subnetwork graph first because of dependencies on scope.
      _, _, bagging_train_op_spec, sub_local_init_op = call_model_fn_template(
          subestimator, subestimator_features, subestimator_labels, mode,
          summary)
      # Graph for ensemble learning gets model_fn_1 for scope.
      logits, last_layer, _, ensemble_local_init_op = call_model_fn_template(
          subestimator, features, labels, mode, summary)

      if sub_local_init_op:
        local_init_ops.append(sub_local_init_op)
      if ensemble_local_init_op:
        local_init_ops.append(ensemble_local_init_op)

      # Run train op in a hook so that exceptions can be intercepted by the
      # AdaNet framework instead of the Estimator's monitored training session.
      hooks = bagging_train_op_spec.hooks + (_SecondaryTrainOpRunnerHook(
          bagging_train_op_spec.train_op),)
      train_op_spec = subnetwork_lib.TrainOpSpec(
          train_op=tf.no_op(),
          chief_hooks=bagging_train_op_spec.chief_hooks,
          hooks=hooks)
    else:
      logits, last_layer, train_op_spec, local_init_op = call_model_fn_template(
          subestimator, features, labels, mode, summary)
      if local_init_op:
        local_init_ops.append(local_init_op)

    # TODO: Replace with variance complexity measure.
    complexity = tf.constant(0.)
    return subnetwork_lib.Subnetwork(
        logits=logits,
        last_layer=last_layer,
        shared={"train_op": train_op_spec},
        complexity=complexity,
        local_init_ops=local_init_ops)

  def build_subnetwork_train_op(self, subnetwork, loss, var_list, labels,
                                iteration_step, summary, previous_ensemble):
    return subnetwork.shared["train_op"]


def _convert_to_subestimator(candidate):
  """Converts a candidate to an AutoEnsembleSubestimator."""

  if callable(candidate):
    return candidate
  if isinstance(candidate, AutoEnsembleSubestimator):
    return lambda config: candidate

  from tensorflow_estimator.python.estimator import estimator as estimator_lib  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top
  if isinstance(candidate,
                (estimator_lib.Estimator, estimator_lib.EstimatorV2)):
    return lambda config: AutoEnsembleSubestimator(candidate)
  raise ValueError(
      "subestimator in candidate_pool must have type tf.estimator.Estimator or "
      "adanet.AutoEnsembleSubestimator but got {}".format(candidate.__class__))


class _GeneratorFromCandidatePool(subnetwork_lib.Generator):
  """An `adanet.Generator` from a pool of `Estimator` and `Model` instances."""

  def __init__(self, candidate_pool, logits_fn, last_layer_fn):
    self._candidate_pool = candidate_pool
    if logits_fn is None:
      logits_fn = _default_logits
    self._logits_fn = logits_fn
    self._last_layer_fn = last_layer_fn

  def generate_candidates(self, previous_ensemble, iteration_number,
                          previous_ensemble_reports, all_reports, config):
    assert config
    builders = []
    candidate_pool = self._maybe_call_candidate_pool(config, iteration_number)

    if isinstance(candidate_pool, dict):
      for name in sorted(candidate_pool):
        builders.append(
            _BuilderFromSubestimator(
                name,
                _convert_to_subestimator(candidate_pool[name]),
                logits_fn=self._logits_fn,
                last_layer_fn=self._last_layer_fn,
                config=config))
      return builders

    for i, estimator in enumerate(candidate_pool):
      name = "{class_name}{index}".format(
          class_name=estimator.__class__.__name__, index=i)
      builders.append(
          _BuilderFromSubestimator(
              name,
              _convert_to_subestimator(estimator),
              logits_fn=self._logits_fn,
              last_layer_fn=self._last_layer_fn,
              config=config))
    return builders

  def _maybe_call_candidate_pool(self, config, iteration_number):
    if callable(self._candidate_pool):
      # candidate_pool can be a function.
      candidate_pool_args = inspect.getargs(self._candidate_pool.__code__).args
      if "iteration_number" in candidate_pool_args:
        # TODO: Make the "config" argument optional using introspection.
        return self._candidate_pool(
            config=config, iteration_number=iteration_number)
      else:
        return self._candidate_pool(config=config)

    return self._candidate_pool
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  Source code for adanet.autoensemble.estimator

"""An estimator that learns to ensemble.

Copyright 2018 The AdaNet Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from adanet import core
from adanet.autoensemble.common import _GeneratorFromCandidatePool

import tensorflow.compat.v2 as tf


[docs]class AutoEnsembleEstimator(core.Estimator):  # pylint: disable=g-classes-have-attributes
  # pyformat: disable
  """A :class:`tf.estimator.Estimator` that learns to ensemble models.

  Specifically, it learns to ensemble models from a candidate pool using the
  Adanet algorithm.

  .. code-block:: python

      # A simple example of learning to ensemble linear and neural network
      # models.

      import adanet
      import tensorflow as tf

      feature_columns = ...

      head = MultiClassHead(n_classes=10)

      # Learn to ensemble linear and DNN models.
      estimator = adanet.AutoEnsembleEstimator(
          head=head,
          candidate_pool=lambda config: {
              "linear":
                  tf.estimator.LinearEstimator(
                      head=head,
                      feature_columns=feature_columns,
                      config=config,
                      optimizer=...),
              "dnn":
                  tf.estimator.DNNEstimator(
                      head=head,
                      feature_columns=feature_columns,
                      config=config,
                      optimizer=...,
                      hidden_units=[1000, 500, 100])},
          max_iteration_steps=50)

      # Input builders
      def input_fn_train:
        # Returns tf.data.Dataset of (x, y) tuple where y represents label's
        # class index.
        pass
      def input_fn_eval:
        # Returns tf.data.Dataset of (x, y) tuple where y represents label's
        # class index.
        pass
      def input_fn_predict:
        # Returns tf.data.Dataset of (x, None) tuple.
        pass
      estimator.train(input_fn=input_fn_train, steps=100)
      metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10)
      predictions = estimator.predict(input_fn=input_fn_predict)

  Or to train candidate subestimators on different training data subsets:

  .. code-block:: python

      train_data_files = [...]

      # Learn to ensemble linear and DNN models.
      estimator = adanet.AutoEnsembleEstimator(
          head=head,
          candidate_pool=lambda config: {
              "linear":
                  adanet.AutoEnsembleSubestimator(
                      tf.estimator.LinearEstimator(
                          head=head,
                          feature_columns=feature_columns,
                          config=config,
                          optimizer=...),
                      make_train_input_fn(train_data_files[:-1])),
              "dnn":
                  adanet.AutoEnsembleSubestimator(
                      tf.estimator.DNNEstimator(
                          head=head,
                          feature_columns=feature_columns,
                          config=config,
                          optimizer=...,
                          hidden_units=[1000, 500, 100]),
                      make_train_input_fn(train_data_files[0:]))},
          max_iteration_steps=50)

      estimator.train(input_fn=make_train_input_fn(train_data_files), steps=100)


  Args:
    head: A :class:`tf.contrib.estimator.Head` instance for computing loss and
      evaluation metrics for every candidate.
    candidate_pool: List of :class:`tf.estimator.Estimator` and
      :class:`AutoEnsembleSubestimator` objects, or dict of string name to
      :class:`tf.estimator.Estimator` and :class:`AutoEnsembleSubestimator`
      objects that are candidate subestimators to ensemble at each iteration.
      The order does not directly affect which candidates will be included in
      the final ensemble, but will affect the name of the candidate. When using
      a dict, the string key becomes the candidate subestimator's name.
      Alternatively, this argument can be a function that takes a `config`
      argument and returns the aforementioned values in case the
      objects need to be re-instantiated at each adanet iteration.
    max_iteration_steps: Total number of steps for which to train candidates per
      iteration. If `OutOfRange` or `StopIteration` occurs in the middle,
      training stops before `max_iteration_steps` steps.
    logits_fn: A function for fetching the subnetwork logits from a
      :class:`tf.estimator.EstimatorSpec`, which should obey the following
      signature:
        - `Args`: Can only have following argument:
          - estimator_spec: The candidate's :class:`tf.estimator.EstimatorSpec`.
        - `Returns`: Logits :class:`tf.Tensor` or dict of string to logits
          :class:`tf.Tensor` (for multi-head) for the candidate subnetwork
          extracted from the given `estimator_spec`. When `None`, it will
          default to returning `estimator_spec.predictions` when they are a
          :class:`tf.Tensor` or the :class:`tf.Tensor` for the key 'logits' when
          they are a dict of string to :class:`tf.Tensor`.
    last_layer_fn: An optional function for fetching the subnetwork last_layer
      from a :class:`tf.estimator.EstimatorSpec`, which should obey the
      following signature:
        - `Args`: Can only have following argument:
          - estimator_spec: The candidate's :class:`tf.estimator.EstimatorSpec`.
        - `Returns`: Last layer :class:`tf.Tensor` or dict of string to last
          layer :class:`tf.Tensor` (for multi-head) for the candidate subnetwork
          extracted from the given `estimator_spec`. The last_layer can be used
          for learning ensembles or exporting them as embeddings.
      When `None`, it will default to using the logits as the last_layer.
    ensemblers: See :class:`adanet.Estimator`.
    ensemble_strategies: See :class:`adanet.Estimator`.
    evaluator:  See :class:`adanet.Estimator`.
    metric_fn:  See :class:`adanet.Estimator`.
    force_grow:  See :class:`adanet.Estimator`.
    adanet_loss_decay: See :class:`adanet.Estimator`.
    worker_wait_timeout_secs: See :class:`adanet.Estimator`.
    model_dir: See :class:`adanet.Estimator`.
    config: See :class:`adanet.Estimator`.
    debug: See :class:`adanet.Estimator`.
    enable_ensemble_summaries: See :class:`adanet.Estimator`.
    enable_subnetwork_summaries: See :class:`adanet.Estimator`.
    global_step_combiner_fn: See :class:`adanet.Estimator`.
    max_iterations: See :class:`adanet.Estimator`.
    replay_config: See :class:`adanet.Estimator`.
    **kwargs: Extra keyword args passed to the parent.

  Returns:
    An :class:`adanet.AutoEnsembleEstimator` instance.

  Raises:
    ValueError: If any of the candidates in `candidate_pool` are not
      :class:`tf.estimator.Estimator` instances.
  """
  # pyformat: enable

  def __init__(self,
               head,
               candidate_pool,
               max_iteration_steps,
               ensemblers=None,
               ensemble_strategies=None,
               logits_fn=None,
               last_layer_fn=None,
               evaluator=None,
               metric_fn=None,
               force_grow=False,
               adanet_loss_decay=.9,
               worker_wait_timeout_secs=7200,
               model_dir=None,
               config=None,
               debug=False,
               enable_ensemble_summaries=True,
               enable_subnetwork_summaries=True,
               global_step_combiner_fn=tf.math.reduce_mean,
               max_iterations=None,
               replay_config=None,
               **kwargs):
    subnetwork_generator = _GeneratorFromCandidatePool(candidate_pool,
                                                       logits_fn, last_layer_fn)
    super(AutoEnsembleEstimator, self).__init__(
        head=head,
        subnetwork_generator=subnetwork_generator,
        max_iteration_steps=max_iteration_steps,
        ensemblers=ensemblers,
        ensemble_strategies=ensemble_strategies,
        evaluator=evaluator,
        metric_fn=metric_fn,
        force_grow=force_grow,
        adanet_loss_decay=adanet_loss_decay,
        worker_wait_timeout_secs=worker_wait_timeout_secs,
        model_dir=model_dir,
        config=config,
        debug=debug,
        enable_ensemble_summaries=enable_ensemble_summaries,
        enable_subnetwork_summaries=enable_subnetwork_summaries,
        global_step_combiner_fn=global_step_combiner_fn,
        max_iterations=max_iterations,
        replay_config=replay_config,
        **kwargs)



[docs]class AutoEnsembleTPUEstimator(core.TPUEstimator):  # pylint: disable=g-classes-have-attributes
  # pyformat: disable
  """A :class:`tf.estimator.tpu.TPUEstimator` that learns to ensemble models.

  Specifically, it learns to ensemble models from a candidate pool using the
  Adanet algorithm.

  This estimator is capable of training and evaluating on TPU. It can ensemble
  both :class:`tf.estimator.tpu.TPUEstimator` candidates as well as regular
  :class:`tf.estimator.Estimator` candidates, as long as these candidates are
  TPU compatible.

  Note the following restrictions compared to AutoEnsembleEstimator:
    * All candidates must wrap their optimizers with a
      :class:`tf.tpu.CrossShardOptimizer`.
    * The `input_fn` must expose a `params` argument.
    * The `model_fn` of :class:`tf.estimator.tpu.TPUEstimator` candidates must
      also expose a `params` argument.

  WARNING: This Estimator is a work in progress and the API could change at any
  moment. May not support all AutoEnsembleEstimator features.

    .. code-block:: python

      # A simple example of learning to ensemble linear and neural network
      # models on TPU.

      import adanet
      import tensorflow as tf

      feature_columns = ...

      head = MultiClassHead(n_classes=10)

      # Learn to ensemble linear and DNN models.
      estimator = adanet.AutoEnsembleTPUEstimator(
          head=head,
          candidate_pool=lambda config: {
              "linear":
                  tf.estimator.LinearEstimator(
                      head=head,
                      feature_columns=feature_columns,
                      config=config,
                      optimizer=tf.tpu.CrossShardOptimizer(...)),
              "dnn":
                  tf.estimator.DNNEstimator(
                      head=head,
                      feature_columns=feature_columns,
                      config=config,
                      optimizer=tf.tpu.CrossShardOptimzier(...),
                      hidden_units=[1000, 500, 100])},
          max_iteration_steps=50)

      # Input builders
      def input_fn_train(params):
        # Returns tf.data.Dataset of (x, y) tuple where y represents label's
        # class index.
        pass
      def input_fn_eval(params):
        # Returns tf.data.Dataset of (x, y) tuple where y represents label's
        # class index.
        pass
      def input_fn_predict():
        # Returns tf.data.Dataset of (x, None) tuple.
        pass
      estimator.train(input_fn=input_fn_train, steps=100)
      metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10)
      predictions = estimator.predict(input_fn=input_fn_predict)

  Args:
    head: A :class:`tf.contrib.estimator.Head` instance for computing loss and
      evaluation metrics for every candidate.
    candidate_pool: List of :class:`tf.estimator.tpu.TPUEstimator` and
      :class:`AutoEnsembleSubestimator` objects, or dict of string name to
      :class:`tf.estimator.tpu.TPUEstimator` and
      :class:`AutoEnsembleSubestimator` objects that are candidate subestimators
      to ensemble at each iteration. The order does not directly affect which
      candidates will be included in the final ensemble, but will affect the
      name of the candidate. When using a dict, the string key becomes the
      candidate subestimator's name. Alternatively, this argument can be a
      function that takes a `config` argument and returns the aforementioned
      values in case the objects need to be re-instantiated at each adanet
      iteration.
    max_iteration_steps: See :class:`adanet.Estimator`.
    logits_fn: A function for fetching the subnetwork logits from a
      :class:`tf.estimator.EstimatorSpec`, which should obey the following
      signature:
        - `Args`: Can only have following argument:
          - estimator_spec: The candidate's :class:`tf.estimator.EstimatorSpec`.
        - `Returns`: Logits :class:`tf.Tensor` or dict of string to logits
          :class:`tf.Tensor` (for multi-head) for the candidate subnetwork
          extracted from the given `estimator_spec`. When `None`, it will
          default to returning `estimator_spec.predictions` when they are a
          :class:`tf.Tensor` or the :class:`tf.Tensor` for the key 'logits' when
          they are a dict of string to :class:`tf.Tensor`.
    last_layer_fn: An optional function for fetching the subnetwork last_layer
      from a :class:`tf.estimator.EstimatorSpec`, which should obey the
      following signature:
        - `Args`: Can only have following argument:
          - estimator_spec: The candidate's :class:`tf.estimator.EstimatorSpec`.
        - `Returns`: Last layer :class:`tf.Tensor` or dict of string to last
          layer :class:`tf.Tensor` (for multi-head) for the candidate subnetwork
          extracted from the given `estimator_spec`. The last_layer can be used
          for learning ensembles or exporting them as embeddings.
      When `None`, it will default to using the logits as the last_layer.
    ensemblers: See :class:`adanet.Estimator`.
    ensemble_strategies: See :class:`adanet.Estimator`.
    evaluator:  See :class:`adanet.Estimator`.
    metric_fn:  See :class:`adanet.Estimator`.
    force_grow:  See :class:`adanet.Estimator`.
    adanet_loss_decay: See :class:`adanet.Estimator`.
    model_dir: See :class:`adanet.Estimator`.
    config: See :class:`adanet.Estimator`.
    use_tpu: See :class:`adanet.Estimator`.
    eval_on_tpu: See :class:`adanet.Estimator`.
    export_to_tpu: See :class:`adanet.Estimator`.
    train_batch_size: See :class:`adanet.Estimator`.
    eval_batch_size: See :class:`adanet.Estimator`.
    embedding_config_spec: See :class:`adanet.Estimator`.
    debug: See :class:`adanet.Estimator`.
    enable_ensemble_summaries: See :class:`adanet.Estimator`.
    enable_subnetwork_summaries: See :class:`adanet.Estimator`.
    global_step_combiner_fn: See :class:`adanet.Estimator`.
    max_iterations: See :class:`adanet.Estimator`.
    replay_config: See :class:`adanet.Estimator`.
    **kwargs: Extra keyword args passed to the parent.

  Returns:
    An :class:`adanet.AutoEnsembleTPUEstimator` instance.

  Raises:
    ValueError: If any of the candidates in `candidate_pool` are not
      :class:`tf.estimator.Estimator` instances.
  """
  # pyformat: enable

  def __init__(self,
               head,
               candidate_pool,
               max_iteration_steps,
               ensemblers=None,
               ensemble_strategies=None,
               logits_fn=None,
               last_layer_fn=None,
               evaluator=None,
               metric_fn=None,
               force_grow=False,
               adanet_loss_decay=.9,
               model_dir=None,
               config=None,
               use_tpu=True,
               eval_on_tpu=True,
               export_to_tpu=True,
               train_batch_size=None,
               eval_batch_size=None,
               predict_batch_size=None,
               embedding_config_spec=None,
               debug=False,
               enable_ensemble_summaries=True,
               enable_subnetwork_summaries=True,
               global_step_combiner_fn=tf.math.reduce_mean,
               max_iterations=None,
               replay_config=None,
               **kwargs):
    subnetwork_generator = _GeneratorFromCandidatePool(candidate_pool,
                                                       logits_fn, last_layer_fn)
    super(AutoEnsembleTPUEstimator, self).__init__(
        head=head,
        subnetwork_generator=subnetwork_generator,
        max_iteration_steps=max_iteration_steps,
        ensemblers=ensemblers,
        ensemble_strategies=ensemble_strategies,
        evaluator=evaluator,
        metric_fn=metric_fn,
        force_grow=force_grow,
        adanet_loss_decay=adanet_loss_decay,
        model_dir=model_dir,
        config=config,
        use_tpu=use_tpu,
        eval_on_tpu=eval_on_tpu,
        export_to_tpu=export_to_tpu,
        train_batch_size=train_batch_size,
        eval_batch_size=eval_batch_size,
        predict_batch_size=predict_batch_size,
        embedding_config_spec=embedding_config_spec,
        debug=debug,
        enable_ensemble_summaries=enable_ensemble_summaries,
        enable_subnetwork_summaries=enable_subnetwork_summaries,
        global_step_combiner_fn=global_step_combiner_fn,
        max_iterations=max_iterations,
        replay_config=replay_config,
        **kwargs)
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  Source code for adanet.core.estimator

"""An AdaNet estimator implementation in Tensorflow using a single graph.

Copyright 2018 The AdaNet Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import contextlib
import errno
import inspect
import os
import time

from absl import logging
from adanet import distributed as distributed_lib
from adanet import ensemble as ensemble_lib
from adanet import tf_compat
from adanet.core.architecture import _Architecture
from adanet.core.candidate import _CandidateBuilder
from adanet.core.ensemble_builder import _EnsembleBuilder
from adanet.core.ensemble_builder import _SubnetworkManager
from adanet.core.iteration import _Iteration
from adanet.core.iteration import _IterationBuilder
from adanet.core.report_accessor import _ReportAccessor
from adanet.core.summary import _ScopedSummary
from adanet.core.summary import _ScopedSummaryV2
from adanet.core.summary import _TPUScopedSummary
from adanet.core.timer import _CountDownTimer
from adanet.distributed.devices import monkey_patch_default_variable_placement_strategy
import numpy as np
import six
import tensorflow.compat.v2 as tf
from typing import Any, Callable, Dict, Optional, Sequence, Text  # (b/144172555) pylint:disable=unused-import


class _StopAfterTrainingHook(tf_compat.SessionRunHook):
  """Hook that requests stop once iteration is over."""

  def __init__(self, iteration, after_fn):
    # type: (_Iteration, Callable[[], None]) -> None
    """Initializes a `_StopAfterTrainingHook`.

    Args:
      iteration: An `_Iteration` instance.
      after_fn: A function to call after training stopped.

    Returns:
      A `_StopAfterTrainingHook` instance.
    """

    self._iteration = iteration
    self._after_fn = after_fn

  def before_run(self, run_context):
    """See `SessionRunHook`."""

    self._stop_if_is_over(run_context)

  def after_run(self, run_context, run_values):
    """See `SessionRunHook`."""

    self._stop_if_is_over(run_context)

  def _stop_if_is_over(self, run_context):
    """Signals the monitored session to step when the iteration is over."""

    if not self._iteration.train_manager.is_over():
      return
    logging.info("Now stopping iteration %d training", self._iteration.number)
    run_context.request_stop()
    self._after_fn()


class _SummaryV2SaverHook(tf_compat.SessionRunHook):
  """A hook that writes summaries to the appropriate log directory on disk."""

  def __init__(self, summaries, save_steps=None, save_secs=None):
    """Initializes a `SummaryV2SaverHook` for writing TF 2 summaries.

    Args:
      summaries: List of `_ScopedSummaryV2` instances.
      save_steps: `int`, save summaries every N steps. Exactly one of
        `save_secs` and `save_steps` should be set.
      save_secs: `int`, save summaries every N seconds.
    """

    self._summaries = summaries
    self._summary_ops = []
    self._writer_init_ops = []
    self._timer = tf_compat.v1.train.SecondOrStepTimer(
        every_secs=save_secs, every_steps=save_steps)

  def begin(self):
    self._next_step = None
    self._global_step_tensor = tf_compat.v1.train.get_global_step()

    for summary in self._summaries:
      assert isinstance(summary, _ScopedSummaryV2)
      writer = tf_compat.v2.summary.create_file_writer(summary.logdir)
      with writer.as_default():
        for summary_fn, tensor in summary.summary_tuples():
          self._summary_ops.append(
              summary_fn(tensor, step=tf.compat.v1.train.get_global_step()))
      self._writer_init_ops.append(writer.init())

  def after_create_session(self, session, coord):
    session.run(self._writer_init_ops)

  def before_run(self, run_context):
    requests = {"global_step": self._global_step_tensor}
    self._request_summary = (
        self._next_step is None or
        self._timer.should_trigger_for_step(self._next_step))
    if self._request_summary:
      requests["summary"] = self._summary_ops

    return tf_compat.SessionRunArgs(requests)

  def after_run(self, run_context, run_values):
    stale_global_step = run_values.results["global_step"]
    global_step = stale_global_step + 1
    if self._next_step is None or self._request_summary:
      global_step = run_context.session.run(self._global_step_tensor)

    if self._request_summary:
      self._timer.update_last_triggered_step(global_step)

    self._next_step = global_step + 1

  def end(self, session):
    # TODO: Run writer.flush() at Session end.
    # Currently disabled because the flush op crashes between iterations.
    return


class _EvalMetricSaverHook(tf_compat.SessionRunHook):
  """A hook for writing candidate evaluation metrics as summaries to disk."""

  def __init__(self, name, kind, eval_metrics, output_dir):
    # type: (Text, Text, Any, Text) -> None
    """Initializes a `_EvalMetricSaverHook` instance.

    Args:
      name: String name of candidate owner of these metrics.
      kind: The kind of candidate that the metrics belong to (e.g. subnetwork).
      eval_metrics: Tuple of (metric_fn, tensors) which returns a dict of metric
        results keyed by name. The values of the dict are the results of calling
        a metric function, namely a `(metric_tensor, update_op)` tuple.
        `metric_tensor` should be evaluated without any impact on state
        (typically is a pure computation based on variables.). For example, it
        should not trigger the `update_op` or require any input fetching.
      output_dir: Directory for writing evaluation summaries.

    Returns:
      An `_EvalMetricSaverHook` instance.
    """

    self._name = name
    self._kind = kind
    self._eval_metrics = eval_metrics
    self._output_dir = output_dir

  def begin(self):
    """See `SessionRunHook`."""

    # The metric_fn is called with tf.placeholders to simply read the value of
    # the metric variables. The metrics themselves are computed as a result of
    # being returned in the EstimatorSpec by _adanet_model_fn.
    metric_fn, tensors = self._eval_metrics.eval_metrics_tuple()
    tensors = [tf_compat.v1.placeholder(t.dtype, t.shape) for t in tensors]
    eval_metric_ops = metric_fn(*tensors)
    self._eval_metric_tensors = {}
    for key in sorted(eval_metric_ops):
      value = tf_compat.metric_op(eval_metric_ops[key])
      self._eval_metric_tensors[key] = value[0]

  def _dict_to_str(self, dictionary):
    """Get a `str` representation of a `dict`.

    Args:
      dictionary: The `dict` to be represented as `str`.

    Returns:
      A `str` representing the `dictionary`.
    """
    return ", ".join(
        "{} = {}".format(k, v) for k, v in sorted(dictionary.items()))

  def end(self, session):
    """See `SessionRunHook`."""

    # Forked from tensorflow/python/estimator/estimator.py function called
    # _write_dict_to_summary.
    current_global_step = tf_compat.v1.train.get_global_step()
    eval_dict, current_global_step = session.run(
        (self._eval_metric_tensors, current_global_step))

    logging.info("Saving %s '%s' dict for global step %d: %s", self._kind,
                 self._name, current_global_step, self._dict_to_str(eval_dict))
    summary_writer = tf_compat.v1.summary.FileWriterCache.get(self._output_dir)
    summary_proto = tf_compat.v1.summary.Summary()
    for key in eval_dict:
      value = eval_dict[key]
      if isinstance(value, (np.float32, float)):
        summary_proto.value.add(tag=key, simple_value=float(value))
      elif isinstance(value, six.binary_type):
        summ = tf_compat.v1.summary.Summary.FromString(value)
        for i, _ in enumerate(summ.value):
          summ.value[i].tag = "{}/{}".format(key, i)
        summary_proto.value.extend(summ.value)
      else:
        logging.warn(
            "Skipping summary for %s, must be a float, np.float32, "
            "or a serialized string of Summary.", key)
    summary_writer.add_summary(summary_proto, current_global_step)
    summary_writer.flush()
    # Note(b/137672676): Do not explicitly call summary_writer.close() here.
    # This will cause eval summaries to not be written out after the first time
    # in continuous evals.


class _OverwriteCheckpointHook(tf_compat.SessionRunHook):
  """Hook to overwrite the latest checkpoint with next iteration variables."""

  def __init__(self, current_iteration, iteration_number_tensor,
               previous_iteration_vars, config, enable_v2_checkpoint):
    """Initializes an _OverwriteCheckpointHook instance.

    Args:
      current_iteration: Current `_Iteration` object.
      iteration_number_tensor: Int variable `Tensor` storing the current
        iteration number.
      previous_iteration_vars: Variables to restore from the previous iteration
        before overwriting the checkpoint.
      config: The Estimator's RunConfig object.
      enable_v2_checkpoint: Whether `tf.train.Checkpoint` is used for
        checkpointing.
    """

    self._current_iteration = current_iteration
    self._iteration_number = current_iteration.number
    self._iteration_number_tensor = iteration_number_tensor
    self._previous_iteration_vars = previous_iteration_vars
    self._model_dir = config.model_dir
    self._checkpoint_state = tf.train.get_checkpoint_state(self._model_dir)
    self._keep_checkpoint_max = config.keep_checkpoint_max
    self._enable_v2_checkpoint = enable_v2_checkpoint

    self._update_op = None
    self._overwrite_saver = None
    self._checkpoint_overwritten = False

  def begin(self):
    """Creates the savers and adds ops needed for overwriting the checkpoint.

    Two savers are created, a restore saver which is passed the variables from
    the previous iteration to restore, and an overwrite saver which will
    actually overwrite the checkpoint.
    """

    from tensorflow.python.training.tracking import graph_view  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top

    if self._enable_v2_checkpoint:
      prev_checkpoint = self._current_iteration.previous_iteration.checkpoint
      self._status = prev_checkpoint.restore(
          self._checkpoint_state.model_checkpoint_path)
      # Because we prune the previous iteration's candidates, only a subset of
      # the variables present in the checkpoint will be used. Assert they are
      # restored.
      self._status.expect_partial().assert_existing_objects_matched()

      self._overwrite_saver = tf_compat.v1.train.Saver(
          var_list=graph_view.ObjectGraphView(
              self._current_iteration.checkpoint).frozen_saveable_objects(),
          sharded=True,
          max_to_keep=self._keep_checkpoint_max)
    else:
      self._restore_saver = tf_compat.v1.train.Saver(
          sharded=True, var_list=self._previous_iteration_vars)
      # Note: self._iteration_number already contains the value of the next
      # iteration since _OverwriteCheckpointHook should only execute during the
      # graph growing phase.
      self._update_op = self._iteration_number_tensor.assign(
          self._iteration_number)
      self._overwrite_saver = tf_compat.v1.train.Saver(
          sharded=True, max_to_keep=self._keep_checkpoint_max)
    self._overwrite_saver.recover_last_checkpoints(
        self._checkpoint_state.all_model_checkpoint_paths)

  def before_run(self, run_context):
    """Overwrites checkpoint before any calls to session.run().

    This is to ensure that the values of the variables in the overwritten
    checkpoint match those in the pevious iteration checkpoint.

    Args:
      run_context: The tf.train.SessionRunContext passed to the hook.
    """

    if not self._checkpoint_overwritten:
      session = run_context.session
      if self._enable_v2_checkpoint:
        self._status.initialize_or_restore(session)
      else:
        self._restore_saver.restore(
            session, self._checkpoint_state.model_checkpoint_path)
        session.run(self._update_op)
      checkpoint_path = os.path.join(self._model_dir, "increment.ckpt")
      logging.info(
          "Overwriting checkpoint with new graph for iteration %d to %s-%d",
          self._current_iteration.number, checkpoint_path,
          self._current_iteration.number)
      # Specify global_step=self._iteration_number to append the iteration
      # number to the checkpoint name, e.g. <model_dir>/increment.ckpt-1.
      self._overwrite_saver.save(
          session, checkpoint_path, global_step=self._current_iteration.number)
      self._checkpoint_overwritten = True


def _copy_recursively(source, destination):
  """Copies a directory and its content.

  Args:
    source: Source directory.
    destination: Destination directory.
  """

  for src_dir, _, src_files in tf.io.gfile.walk(source):
    dst_dir = os.path.join(destination, os.path.relpath(src_dir, source))
    if not tf.io.gfile.exists(dst_dir):
      tf.io.gfile.makedirs(dst_dir)
    for src_file in src_files:
      tf.io.gfile.copy(
          os.path.join(src_dir, src_file),
          os.path.join(dst_dir, src_file),
          overwrite=True)


class _GraphGrowingHookDecorator(tf_compat.SessionRunHook):
  """Decorates a SessionRunHook to only run begin() and end() methods."""

  def __init__(self, hook):
    # type: (tf_compat.SessionRunHook) -> None
    """Initializes a _GraphGrowingHookDecorator instance.

    Args:
      hook: The SessionRunHook to decorate.
    """
    self._hook = hook

  def begin(self):
    self._hook.begin()

  def end(self, session):
    self._hook.end(session)


def _delete_directory(directory):
  # type: (Text) -> None
  """Removes directory and handles any folder or file exceptions."""
  if not tf.io.gfile.exists(directory):
    return
  try:
    tf.io.gfile.rmtree(directory)
  except (tf.errors.PermissionDeniedError,
          tf.errors.FailedPreconditionError) as e:
    logging.info("Ignoring folder or file issues: %s '%s'", e.error_code,
                 e.message)


@contextlib.contextmanager
def _disable_asserts_for_confusion_matrix_at_thresholds():
  """Disables asserts in metrics_impl._confusion_matrix_at_thresholds.

  AdaNet sometimes have a few NaN and non-NaN subnetworks at a given iteration.
  This doesn't crash during training, since AdaNet simply chooses the best
  subnetwork among the non-NaN candidates. However, during estimator.evaluate(),
  AdaNet evaluates all subnetworks and ensembles. This triggers an assertion
  failure in V1 binary classifier _Head, since it expects the predictions to be
  between 0 and 1, and NaN is not between 0 and 1. This causes AdaNet and
  to raise an exception during estimator.evaluate(), even though the final model
  is servable. Hence, we disable these assertions during evaluate(), and allow
  the NaNs to be written to disk.

  Yields:
    Nothing. Simply returns control back to the caller.
  """

  from tensorflow.python.ops import metrics_impl  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top

  def _no_op_assert(x, y, data=None, summarize=None, message=None, name=None):
    """Dummy assert that never fails."""

    del x, y, data, summarize, message, name  # unused
    return tf.no_op()

  old_confusion_matrix_at_thresholds = (
      metrics_impl._confusion_matrix_at_thresholds)  # pylint:disable=protected-access

  def _confusion_matrix_at_thresholds_without_asserts(labels,
                                                      predictions,
                                                      thresholds,
                                                      weights=None,
                                                      includes=None):
    """Calls _confusion_matrix_at_thresholds without asserts; returns output."""

    from tensorflow.python.ops import check_ops  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top
    old_assert_greater_equal = check_ops.assert_greater_equal
    old_assert_less_equal = check_ops.assert_less_equal
    setattr(check_ops, "assert_greater_equal", _no_op_assert)
    setattr(check_ops, "assert_less_equal", _no_op_assert)
    conf_matrix = old_confusion_matrix_at_thresholds(labels, predictions,
                                                     thresholds, weights,
                                                     includes)
    setattr(check_ops, "assert_greater_equal", old_assert_greater_equal)
    setattr(check_ops, "assert_less_equal", old_assert_less_equal)
    return conf_matrix

  setattr(metrics_impl, "_confusion_matrix_at_thresholds",
          _confusion_matrix_at_thresholds_without_asserts)
  try:
    yield
  finally:
    setattr(metrics_impl, "_confusion_matrix_at_thresholds",
            old_confusion_matrix_at_thresholds)


[docs]class Estimator(tf.estimator.Estimator):
  # pyformat: disable
  r"""A :class:`tf.estimator.Estimator` for training, evaluation, and serving.

  This implementation uses an :class:`adanet.subnetwork.Generator` as its weak
  learning algorithm for generating candidate subnetworks. These are trained in
  parallel using a single graph per iteration. At the end of each iteration, the
  estimator saves the sub-graph of the best subnetwork ensemble and its weights
  as a separate checkpoint. At the beginning of the next iteration, the
  estimator imports the previous iteration's frozen graph and adds ops for the
  next candidates as part of a new graph and session. This allows the estimator
  have the performance of Tensorflow's static graph constraint (minus the
  performance hit of reconstructing a graph between iterations), while having
  the flexibility of having a dynamic graph.

  NOTE: Subclassing :class:`tf.estimator.Estimator` is only necessary to work
  with :meth:`tf.estimator.train_and_evaluate` which asserts that the estimator
  argument is a :class:`tf.estimator.Estimator` subclass. However, all training
  is delegated to a separate :class:`tf.estimator.Estimator` instance. It is
  responsible for supporting both local and distributed training. As such, the
  :class:`adanet.Estimator` is only responsible for bookkeeping across
  iterations.

  Args:
    head: A :class:`tf.contrib.estimator.Head` instance for computing loss and
      evaluation metrics for every candidate.
    subnetwork_generator: The :class:`adanet.subnetwork.Generator` which defines
      the candidate subnetworks to train and evaluate at every AdaNet iteration.
    max_iteration_steps: Total number of steps for which to train candidates per
      iteration. If :class:`OutOfRange` or :class:`StopIteration` occurs in the
      middle, training stops before `max_iteration_steps` steps. When
      :code:`None`, it will train the current iteration forever.
    ensemblers: An iterable of :class:`adanet.ensemble.Ensembler` objects that
      define how to ensemble a group of subnetworks. If there are multiple,
      each should have a different `name` property.
    ensemble_strategies: An iterable of :class:`adanet.ensemble.Strategy`
      objects that define the candidate ensembles of subnetworks to explore at
      each iteration.
    evaluator: An :class:`adanet.Evaluator` for candidate selection after all
      subnetworks are done training. When :code:`None`, candidate selection uses
      a moving average of their :class:`adanet.Ensemble` AdaNet loss during
      training instead. In order to use the *AdaNet algorithm* as described in
      [Cortes et al., '17], the given :class:`adanet.Evaluator` must be created
      with the same dataset partition used during training. Otherwise, this
      framework will perform *AdaNet.HoldOut* which uses a holdout set for
      candidate selection, but does not benefit from learning guarantees.
    report_materializer: An :class:`adanet.ReportMaterializer`. Its reports are
      made available to the `subnetwork_generator` at the next iteration, so
      that it can adapt its search space. When `None`, the
      `subnetwork_generator` :meth:`generate_candidates` method will receive
      empty Lists for their `previous_ensemble_reports` and `all_reports`
      arguments.
    metric_fn: A function for adding custom evaluation metrics, which should
      obey the following signature:
        - `Args`:
          Can only have the following three arguments in any order:
          - :code:`predictions`: Predictions `Tensor` or dict of `Tensor`
            created by given :code:`head`.
          - :code:`features`: Input `dict` of `Tensor` objects created by
            :code:`input_fn` which is given to :meth:`estimator.evaluate` as an
            argument.
          - :code:`labels`: Labels `Tensor` or dict of `Tensor` (for multi-head)
            created by :code:`input_fn` which is given to
            :meth:`estimator.evaluate` as an argument.
        - `Returns`: Dict of metric results keyed by name. Final metrics are a
          union of this and :code:`head`'s existing metrics. If there is a name
          conflict between this and :code:`head`s existing metrics, this will
          override the existing one. The values of the dict are the results of
          calling a metric function, namely a :code:`(metric_tensor, update_op)`
          tuple.
    force_grow: Boolean override that forces the ensemble to grow by one
      subnetwork at the end of each iteration. Normally at the end of each
      iteration, AdaNet selects the best candidate ensemble according to its
      performance on the AdaNet objective. In some cases, the best ensemble is
      the `previous_ensemble` as opposed to one that includes a newly trained
      subnetwork. When `True`, the algorithm will not select the
      `previous_ensemble` as the best candidate, and will ensure that after n
      iterations the final ensemble is composed of n subnetworks.
    replicate_ensemble_in_training: Whether to rebuild the frozen subnetworks of
      the ensemble in training mode, which can change the outputs of the frozen
      subnetworks in the ensemble. When `False` and during candidate training,
      the frozen subnetworks in the ensemble are in prediction mode, so
      training-only ops like dropout are not applied to them. When `True` and
      training the candidates, the frozen subnetworks will be in training mode
      as well, so they will apply training-only ops like dropout.  This argument
      is useful for regularizing learning mixture weights, or for making
      training-only side inputs available in subsequent iterations. For most
      use-cases, this should be `False`.
    adanet_loss_decay: Float decay for the exponential-moving-average of the
      AdaNet objective throughout training. This moving average is a data-
      driven way tracking the best candidate with only the training set.
    delay_secs_per_worker: Float number of seconds to delay starting the
      i-th worker. Staggering worker start-up during distributed asynchronous
      SGD can improve training stability and speed up convergence. Each worker
      will wait (i+1) * delay_secs_per_worker seconds before beginning training.
    max_worker_delay_secs: Float max number of seconds to delay starting the
      i-th worker. Staggering worker start-up during distributed asynchronous
      SGD can improve training stability and speed up convergence. Each worker
      will wait up to max_worker_delay_secs before beginning training.
    worker_wait_secs: Float number of seconds for workers to wait before
      checking if the chief prepared the next iteration.
    worker_wait_timeout_secs: Float number of seconds for workers to wait for
      chief to prepare the next iteration during distributed training. This is
      needed to prevent workers waiting indefinitely for a chief that may have
      crashed or been turned down. When the timeout is exceeded, the worker
      exits the train loop. In situations where the chief job is much slower
      than the worker jobs, this timeout should be increased.
    model_dir: Directory to save model parameters, graph and etc. This can also
      be used to load checkpoints from the directory into a estimator to
      continue training a previously saved model.
    report_dir: Directory where the
      :class:`adanet.subnetwork.MaterializedReport`s materialized by
      :code:`report_materializer` would be saved. If :code:`report_materializer`
      is :code:`None`, this will not save anything. If :code:`None` or
      empty string, defaults to :code:`<model_dir>/report`.
    config: :class:`RunConfig` object to configure the runtime settings.
    debug: Boolean to enable debug mode which will check features and labels
      for Infs and NaNs.
    enable_ensemble_summaries: Whether to record summaries to display in
      TensorBoard for each ensemble candidate. Disable to reduce memory and disk
      usage per run.
    enable_subnetwork_summaries: Whether to record summaries to display in
      TensorBoard for each subnetwork. Disable to reduce memory and disk usage
      per run.
    global_step_combiner_fn: Function for combining each subnetwork's
      iteration step into the global step. By default it is the average of all
      subnetwork iteration steps, which may affect the global_steps/sec as
      subnetworks early stop and no longer increase their iteration step.
    max_iterations: Integer maximum number of AdaNet iterations (a.k.a. rounds)
      of generating new subnetworks and ensembles, training them, and evaluating
      them against the current best ensemble. When :code:`None`, AdaNet will
      keep iterating until `Estimator#train` terminates. Otherwise, if
      :code:`max_iteratios` is supplied and is met or exceeded during training,
      training will terminate even before `steps` or `max_steps`.
    export_subnetwork_logits: Whether to include subnetwork logits in exports.
    export_subnetwork_last_layer: Whether to include subnetwork last layer in
      exports.
    replay_config: Optional :class:`adanet.replay.Config` to specify a previous
      AdaNet run to replay. Given the exact same search space but potentially
      different training data, the `replay_config` causes the estimator to
      reconstruct the previously trained model without performing a search.
      NOTE: The previous run must have executed with identical hyperparameters
      as the new run in order to be replayable. The only supported difference is
      that the underlying data can change.
    **kwargs: Extra keyword args passed to the parent.

  Returns:
    An :class:`adanet.Estimator` instance.

  Raises:
    :code:`ValueError`: If :code:`subnetwork_generator` is :code:`None`.
    :code:`ValueError`: If :code:`max_iteration_steps` is <= 0.
    :code:`ValueError`: If :code:`model_dir` is not specified during distributed
      training.
    :code:`ValueError`: If :code:`max_iterations` is <= 0.
  """
  # pyformat: enable

  class _Keys(object):
    CURRENT_ITERATION = "current_iteration"
    SUBNETWORK_GENERATOR = "subnetwork_generator"

  def __init__(self,
               head,
               subnetwork_generator,
               max_iteration_steps,
               ensemblers=None,
               ensemble_strategies=None,
               evaluator=None,
               report_materializer=None,
               metric_fn=None,
               force_grow=False,
               replicate_ensemble_in_training=False,
               adanet_loss_decay=.9,
               delay_secs_per_worker=5,
               max_worker_delay_secs=60,
               worker_wait_secs=5,
               worker_wait_timeout_secs=7200,
               model_dir=None,
               report_dir=None,
               config=None,
               debug=False,
               enable_ensemble_summaries=True,
               enable_subnetwork_summaries=True,
               global_step_combiner_fn=tf.math.reduce_mean,
               max_iterations=None,
               export_subnetwork_logits=False,
               export_subnetwork_last_layer=True,
               replay_config=None,
               **kwargs):
    if subnetwork_generator is None:
      raise ValueError("subnetwork_generator can't be None.")
    if max_iteration_steps is not None and max_iteration_steps <= 0.:
      raise ValueError("max_iteration_steps must be > 0 or None.")
    if max_iterations is not None and max_iterations <= 0.:
      raise ValueError("max_iterations must be > 0 or None.")
    is_distributed_training = config and config.num_worker_replicas > 1
    is_model_dir_specified = model_dir or (config and config.model_dir)
    if is_distributed_training and not is_model_dir_specified:
      # A common model dir for the chief and workers is required for
      # coordination during distributed training.
      raise ValueError(
          "For distributed training, a model_dir must be specified.")

    self._subnetwork_generator = subnetwork_generator

    # Overwrite superclass's assert that members are not overwritten in order
    # to overwrite public methods. Note that we are doing something that is not
    # explicitly supported by the Estimator API and may break in the future.
    tf.estimator.Estimator._assert_members_are_not_overridden = staticmethod(  # pylint: disable=protected-access
        lambda _: None)

    self._enable_v2_checkpoint = kwargs.pop("enable_v2_checkpoint", False)
    self._evaluator = evaluator
    self._report_materializer = report_materializer

    self._force_grow = force_grow
    self._delay_secs_per_worker = delay_secs_per_worker
    self._max_worker_delay_secs = max_worker_delay_secs
    self._worker_wait_secs = worker_wait_secs
    self._worker_wait_timeout_secs = worker_wait_timeout_secs
    self._max_iterations = max_iterations
    self._replay_config = replay_config

    # Added for backwards compatibility.
    default_ensembler_args = [
        "mixture_weight_type", "mixture_weight_initializer",
        "warm_start_mixture_weights", "adanet_lambda", "adanet_beta", "use_bias"
    ]
    default_ensembler_kwargs = {
        k: v for k, v in kwargs.items() if k in default_ensembler_args
    }
    if default_ensembler_kwargs:
      logging.warning(
          "The following arguments have been moved to "
          "`adanet.ensemble.ComplexityRegularizedEnsembler` which can be "
          "specified in the `ensemblers` argument: %s",
          sorted(default_ensembler_kwargs.keys()))
    for key in default_ensembler_kwargs:
      del kwargs[key]

    # Experimental feature.
    placement_strategy_arg = "experimental_placement_strategy"
    placement_strategy = kwargs.pop(placement_strategy_arg, None)
    if placement_strategy:
      logging.warning(
          "%s is an experimental feature. Its behavior is not guaranteed "
          "to be backwards compatible.", placement_strategy_arg)

    self._warm_start_settings = kwargs.get("warm_start_from")

    # Monkey patch the default variable placement strategy that Estimator uses
    # since it does not support workers having different graphs from the chief.
    # TODO: Consider using `RunConfig.replace` with the new device_fn,
    # but this can cause issues since RunConfig automatically parses TF_CONFIG
    # environment variable.
    with monkey_patch_default_variable_placement_strategy():
      # This `Estimator` is responsible for bookkeeping across iterations, and
      # for training the subnetworks in both a local and distributed setting.
      # Subclassing improves future-proofing against new private methods being
      # added to `tf.estimator.Estimator` that are expected to be callable by
      # external functions, such as in b/110435640.
      super(Estimator, self).__init__(
          model_fn=self._create_model_fn(),
          params={},
          config=config,
          model_dir=model_dir,
          **kwargs)

    if default_ensembler_kwargs and ensemblers:
      raise ValueError("When specifying the `ensemblers` argument, "
                       "the following arguments must not be given: {}".format(
                           default_ensembler_kwargs.keys()))
    if not ensemblers:
      default_ensembler_kwargs["model_dir"] = self.model_dir
      ensemblers = [
          ensemble_lib.ComplexityRegularizedEnsembler(
              **default_ensembler_kwargs)
      ]

    # These are defined after base Estimator's init so that they can
    # use the same temporary model_dir as the underlying Estimator even if
    # model_dir is not provided.
    self._use_tpu = kwargs.get("use_tpu", False)
    ensemble_builder = _EnsembleBuilder(
        head=head,
        metric_fn=metric_fn,
        use_tpu=self._use_tpu,
        export_subnetwork_logits=export_subnetwork_logits,
        export_subnetwork_last_layer=export_subnetwork_last_layer)

    # TODO: Merge CandidateBuilder into SubnetworkManager.
    candidate_builder = _CandidateBuilder(adanet_loss_decay=adanet_loss_decay)
    subnetwork_manager = _SubnetworkManager(
        head=head, metric_fn=metric_fn, use_tpu=self._use_tpu)
    if not placement_strategy:
      placement_strategy = distributed_lib.ReplicationStrategy()
    self._iteration_builder = _IterationBuilder(
        candidate_builder,
        subnetwork_manager,
        ensemble_builder,
        ensemblers,
        max_iteration_steps,
        self._summary_maker,
        global_step_combiner_fn,
        placement_strategy,
        replicate_ensemble_in_training,
        use_tpu=self._use_tpu,
        debug=debug,
        enable_ensemble_summaries=enable_ensemble_summaries,
        enable_subnetwork_summaries=enable_subnetwork_summaries,
        enable_subnetwork_reports=self._report_materializer is not None)
    self._ensemble_strategies = ensemble_strategies or [
        ensemble_lib.GrowStrategy()
    ]

    report_dir = report_dir or os.path.join(self._model_dir, "report")
    self._report_accessor = _ReportAccessor(report_dir)

  def _summary_maker(self, scope=None, skip_summary=False, namespace=None):
    """Constructs a `_ScopedSummary`."""
    if tf_compat.is_v2_behavior_enabled():
      # Here we assume TF 2 behavior is enabled.
      return _ScopedSummaryV2(
          logdir=self._model_dir,
          scope=scope,
          skip_summary=skip_summary,
          namespace=namespace)
    if self._use_tpu:
      return _TPUScopedSummary(
          logdir=self._model_dir,
          scope=scope,
          skip_summary=skip_summary,
          namespace=namespace)
    else:
      return _ScopedSummary(
          scope=scope, skip_summary=skip_summary, namespace=namespace)

  def _checkpoint_iteration_number(self, checkpoint_path):
    # type: (Text) -> int
    """Returns the iteration number from the latest checkpoint."""

    if checkpoint_path is None:
      return 0

    if self._enable_v2_checkpoint:
      return tf_compat.load_variable(
          checkpoint_path, "iteration_number", shape=[], dtype=tf.int64)
    return tf.train.load_variable(checkpoint_path,
                                  self._Keys.CURRENT_ITERATION).item()

  def _checkpoint_global_step(self, checkpoint_path):
    # type: (Text) -> int
    """Returns the global step from the given checkpoint."""

    if checkpoint_path is None:
      return 0

    if self._enable_v2_checkpoint:
      return tf_compat.load_variable(
          checkpoint_path,
          tf_compat.v1.GraphKeys.GLOBAL_STEP,
          shape=[],
          dtype=tf.int64)
    return tf.train.load_variable(checkpoint_path,
                                  tf_compat.v1.GraphKeys.GLOBAL_STEP).item()

[docs]  def train(self,
            input_fn,
            hooks=None,
            steps=None,
            max_steps=None,
            saving_listeners=None):
    # pyformat: disable
    """Trains a model given training data :code:`input_fn`.

    NOTE: If a given input_fn raises an :code:`OutOfRangeError`, then *all* of
    training will exit. The best practice is to make the training dataset repeat
    forever, in order to perform model search for more than one iteration.

    Args:
      input_fn: A function that provides input data for training as minibatches.
        See [Premade Estimators](
        https://tensorflow.org/guide/premade_estimators#create_input_functions)
        for more information. The function should construct and return one of
        the following:
          * A :code:`tf.data.Dataset` object: Outputs of `Dataset` object must
            be a tuple `(features, labels)` with same constraints as below.
          * A tuple `(features, labels)`: Where `features` is a
            :code:`tf.Tensor` or a dictionary of string feature name to
            `Tensor` and `labels` is a :code:`Tensor` or a dictionary of string
            label name to `Tensor`. Both `features` and `labels` are consumed by
            `model_fn`. They should satisfy the expectation of `model_fn` from
            inputs.
      hooks: List of :code:`tf.train.SessionRunHook` subclass instances. Used
        for callbacks inside the training loop.
      steps: Number of steps for which to train the model. If :code:`None`,
        train forever or train until `input_fn` generates the
        :code:`tf.errors.OutOfRange` error or :code:`StopIteration` exception.
        `steps` works incrementally. If you call two times `train(steps=10)`
        then training occurs in total 20 steps. If :code:`OutOfRange` or
        :code:`StopIteration` occurs in the middle, training stops before 20
        steps. If you don't want to have incremental behavior please set
        `max_steps` instead. If set, `max_steps` must be :code:`None`.
      max_steps: Number of total steps for which to train model. If
        :code:`None`, train forever or train until `input_fn` generates the
        :code:`tf.errors.OutOfRange` error or :code:`StopIteration` exception.
        If set, `steps` must be `None`. If :code:`OutOfRange` or
        :code:`StopIteration` occurs in the middle, training stops before
        `max_steps` steps. Two calls to `train(steps=100)` means 200 training
        iterations. On the other hand, two calls to `train(max_steps=100)`
        means that the second call will not do any iteration since first call
        did all 100 steps.
      saving_listeners: list of :code:`CheckpointSaverListener` objects. Used
        for callbacks that run immediately before or after checkpoint savings.

    Returns:
      `self`, for chaining.

    Raises:
      ValueError: If both `steps` and `max_steps` are not `None`.
      ValueError: If either `steps` or `max_steps <= 0`.
    """
    # pyformat: enable

    if (steps is not None) and (max_steps is not None):
      raise ValueError("Can not provide both steps and max_steps.")
    if steps is not None and steps <= 0:
      raise ValueError("Must specify steps > 0, given: {}".format(steps))

    latest_checkpoint = tf.train.latest_checkpoint(self.model_dir)
    latest_global_steps = self._checkpoint_global_step(latest_checkpoint)
    if steps is not None:
      max_steps = latest_global_steps + steps

    # Each iteration of this AdaNet loop represents an `_Iteration`. The
    # current iteration number is stored as a variable in the checkpoint so
    # that training can be stopped and started at anytime.
    with monkey_patch_default_variable_placement_strategy():
      while True:
        latest_checkpoint = tf.train.latest_checkpoint(self.model_dir)
        latest_global_steps = self._checkpoint_global_step(latest_checkpoint)
        current_iteration = self._checkpoint_iteration_number(latest_checkpoint)
        logging.info("Beginning training AdaNet iteration %s",
                     current_iteration)
        self._iteration_ended = False

        # Delegate training to a temporary estimator instead of super to make
        # passing arguments more functional (via params).
        temp_estimator = self._create_temp_estimator(
            config=self.config,
            is_inside_training_loop=True,
            checkpoint_path=latest_checkpoint,
            hooks=hooks)
        result = temp_estimator.train(
            input_fn=input_fn,
            hooks=hooks,
            max_steps=max_steps,
            saving_listeners=saving_listeners)
        # In TensorFlow v2.0.0.rc1 and below, saving listeners are attached to
        # the first CheckpointSaverHook each time train is called. Instead, we
        # pass in the saving_listeners in the first AdaNet iteration only.
        if not tf_compat.version_greater_or_equal("2.0.0.rc1"):
          saving_listeners = None
        logging.info("Finished training Adanet iteration %s", current_iteration)

        # If training ended because the maximum number of training steps
        # occurred, exit training.
        latest_checkpoint = tf.train.latest_checkpoint(self.model_dir)
        global_steps = self._checkpoint_global_step(latest_checkpoint)
        if max_steps is not None and global_steps >= max_steps:
          logging.info("Training ended after %s global steps", global_steps)
          return result

        # If training ended for any reason other than the iteration ending,
        # exit training.
        if not self._iteration_ended:
          logging.info("Training stop requested")
          return result

        max_iterations = self._max_iterations
        if max_iterations and current_iteration + 1 >= max_iterations:
          logging.info(
              "Training ended after exceeding maximum AdaNet iterations")
          if steps is not None and global_steps - latest_global_steps < steps:
            logging.warning(
                "Both `max_iterations` and `steps` were specified, but "
                "`max_iterations` takes precedence over `steps`")
          return result

        logging.info("Beginning bookkeeping phase for iteration %s",
                     current_iteration)

        # The chief prepares the next AdaNet iteration, and increments the
        # iteration number by 1.
        if self.config.is_chief:
          with self._force_replication_strategy():
            self._execute_bookkeeping_phase(
                input_fn,
                current_iteration,
                train_hooks=hooks or [],
                checkpoint_path=latest_checkpoint)

        # This inner loop serves mainly for synchronizing the workers with the
        # chief during distributed training. Workers that finish training early
        # wait for the chief to prepare the next iteration and increment the
        # iteration number. Workers that are slow to finish training quickly
        # move onto the next iteration. And workers that go offline and return
        # online after training ended terminate gracefully.
        wait_for_chief = not self.config.is_chief
        timer = _CountDownTimer(self._worker_wait_timeout_secs)
        while wait_for_chief:
          # Fetch the latest checkpoint.
          latest_checkpoint = tf.train.latest_checkpoint(self.model_dir)

          # If the chief hits max_steps, it will stop training itself and not
          # increment the iteration number, so this is how the worker knows to
          # exit if it wakes up and the chief is gone.
          # TODO: Support steps parameter.
          if self._checkpoint_global_step(latest_checkpoint) >= max_steps:
            return result

          # In distributed training, a worker may end training before the chief
          # overwrites the checkpoint with the incremented iteration number. If
          # that is the case, it should wait for the chief to do so. Otherwise
          # the worker will get stuck waiting for its weights to be initialized.
          next_iteration = self._checkpoint_iteration_number(latest_checkpoint)
          if next_iteration > current_iteration:
            break
          logging.info("Iteration number in latest checkpoint: %d",
                       next_iteration)

          # Check timeout when waiting for potentially downed chief.
          if timer.secs_remaining() == 0:
            logging.error(
                "Chief job did not prepare iteration %d after %s secs. It "
                "may have been preempted, been turned down, or crashed. This "
                "worker is now exiting training.", current_iteration + 1,
                self._worker_wait_timeout_secs)
            return result
          logging.info("Waiting for chief to prepare iteration %d",
                       current_iteration + 1)
          time.sleep(self._worker_wait_secs)

        # Stagger starting workers to prevent training instability.
        # Mimics behavior of tf.estimator.train_and_evaluate.
        if not self.config.is_chief and self.config.task_type == "worker":
          task_id = self.config.task_id or 0
          # Stagger each worker up to 60 secs.
          delay_secs = min(self._max_worker_delay_secs,
                           (task_id + 1.) * self._delay_secs_per_worker)
          if delay_secs > 0.:
            logging.info("Waiting %d secs before continuing training.",
                         delay_secs)
            time.sleep(delay_secs)

        logging.info("Finished bookkeeping phase for iteration %s",
                     current_iteration)


[docs]  def evaluate(self,
               input_fn,
               steps=None,
               hooks=None,
               checkpoint_path=None,
               name=None):
    if not checkpoint_path:
      checkpoint_path = tf.train.latest_checkpoint(self.model_dir)
    logging.info("Evaluating AdaNet model at checkpoint: %s", checkpoint_path)

    # Delegate evaluation to a temporary estimator instead of super to make
    # passing arguments more functional (via params).
    temp_estimator = self._create_temp_estimator(
        config=self.config,
        checkpoint_path=checkpoint_path,
        evaluation_name=name,
        # Ensure that the read to get the iteration number and read to restore
        # variable values come from the same checkpoint during evaluation.
        best_ensemble_index=self._compute_best_ensemble_index(
            checkpoint_path, hooks),
        hooks=hooks)
    with _disable_asserts_for_confusion_matrix_at_thresholds():
      result = temp_estimator.evaluate(
          input_fn,
          steps=steps,
          hooks=hooks,
          checkpoint_path=checkpoint_path,
          name=name)
    return result


[docs]  def predict(self,
              input_fn,
              predict_keys=None,
              hooks=None,
              checkpoint_path=None,
              yield_single_examples=True):
    if not checkpoint_path:
      checkpoint_path = tf.train.latest_checkpoint(self.model_dir)
    logging.info("Computing predictions for AdaNet model at checkpoint: %s",
                 checkpoint_path)
    # Delegate predicting to a temporary estimator instead of super to make
    # passing arguments more functional (via params).
    temp_estimator = self._create_temp_estimator(
        config=self.config,
        best_ensemble_index=self._compute_best_ensemble_index(
            checkpoint_path, hooks=hooks),
        checkpoint_path=checkpoint_path,
        hooks=hooks)
    return temp_estimator.predict(
        input_fn=input_fn,
        predict_keys=predict_keys,
        checkpoint_path=checkpoint_path,
        yield_single_examples=yield_single_examples,
        hooks=hooks)


  from tensorflow.python.util import deprecation  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top

[docs]  @deprecation.deprecated(
      None, "This function has been renamed, use `export_saved_model` instead.")
  def export_savedmodel(self,
                        export_dir_base,
                        serving_input_receiver_fn,
                        hooks=None,
                        assets_extra=None,
                        as_text=False,
                        checkpoint_path=None,
                        strip_default_attrs=False):
    if not checkpoint_path:
      checkpoint_path = tf.train.latest_checkpoint(self.model_dir)
    logging.info("Exporting SavedModel for AdaNet model at checkpoint: %s",
                 checkpoint_path)
    # Delegate exporting to a temporary estimator instead of super to make
    # passing arguments more functional (via params).
    temp_estimator = self._create_temp_estimator(
        config=self.config,
        hooks=hooks,
        best_ensemble_index=self._compute_best_ensemble_index(
            checkpoint_path, hooks=hooks),
        checkpoint_path=checkpoint_path,
        is_export=True)
    with self._force_replication_strategy():
      return temp_estimator.export_savedmodel(
          export_dir_base=export_dir_base,
          serving_input_receiver_fn=serving_input_receiver_fn,
          assets_extra=assets_extra,
          as_text=as_text,
          checkpoint_path=checkpoint_path,
          strip_default_attrs=strip_default_attrs)


[docs]  def export_saved_model(self,
                         export_dir_base,
                         serving_input_receiver_fn,
                         hooks=None,
                         assets_extra=None,
                         as_text=False,
                         checkpoint_path=None,
                         experimental_mode=tf.estimator.ModeKeys.PREDICT):
    if not checkpoint_path:
      checkpoint_path = tf.train.latest_checkpoint(self.model_dir)
    logging.info("Exporting SavedModel for AdaNet model at checkpoint: %s",
                 checkpoint_path)
    # Delegate exporting to a temporary estimator instead of super to make
    # passing arguments more functional (via params).
    temp_estimator = self._create_temp_estimator(
        config=self.config,
        best_ensemble_index=self._compute_best_ensemble_index(
            checkpoint_path, hooks=hooks),
        checkpoint_path=checkpoint_path,
        hooks=hooks,
        is_export=True)
    with self._force_replication_strategy():
      return temp_estimator.export_saved_model(
          export_dir_base=export_dir_base,
          serving_input_receiver_fn=serving_input_receiver_fn,
          assets_extra=assets_extra,
          as_text=as_text,
          checkpoint_path=checkpoint_path,
          experimental_mode=experimental_mode)


[docs]  def experimental_export_all_saved_models(self,
                                           export_dir_base,
                                           input_receiver_fn_map,
                                           hooks=None,
                                           assets_extra=None,
                                           as_text=False,
                                           checkpoint_path=None):
    if not checkpoint_path:
      checkpoint_path = tf.train.latest_checkpoint(self.model_dir)
    logging.info("Exporting SavedModel for AdaNet model at checkpoint: %s",
                 checkpoint_path)
    # Delegate exporting to a temporary estimator instead of super to make
    # passing arguments more functional (via params).
    temp_estimator = self._create_temp_estimator(
        config=self.config,
        best_ensemble_index=self._compute_best_ensemble_index(
            checkpoint_path, hooks=hooks),
        checkpoint_path=checkpoint_path,
        hooks=hooks,
        is_export=True)
    with self._force_replication_strategy():
      return temp_estimator.experimental_export_all_saved_models(
          export_dir_base=export_dir_base,
          input_receiver_fn_map=input_receiver_fn_map,
          assets_extra=assets_extra,
          as_text=as_text,
          checkpoint_path=checkpoint_path)


  def _compute_best_ensemble_index(self, checkpoint_path, hooks):
    # type: (Text, Sequence[tf_compat.SessionRunHook]) -> Optional[int]
    """Runs the Evaluator to obtain the best ensemble index among candidates."""

    # AdaNet Replay.
    if self._replay_config:
      iteration_number = self._checkpoint_iteration_number(checkpoint_path)
      best_index = self._replay_config.get_best_ensemble_index(iteration_number)
      if best_index is not None:
        return best_index

    if self._evaluator:
      return self._execute_candidate_evaluation_phase(
          self._evaluator.input_fn,
          export_best_architecture=False,
          checkpoint_path=checkpoint_path,
          hooks=hooks)
    return None

  @contextlib.contextmanager
  def _force_replication_strategy(self):
    """Sets placement_strategy to always be ReplicationStrategy.

    This is useful during the bookkeeping phase and when Estimator's export
    saved model functions are called. In both of these cases, local tf.Sessions
    are created which do not have access to the cluster. Therefore,
    RoundRobinReplicationStrategy will fail when it tries to place ops on
    cluster devices which the local tf.Sessions cannot access.

    Yields:
      Nothing. Simply returns control back to the caller.
    """

    temp_placement_strategy = self._iteration_builder.placement_strategy
    try:
      placement_strategy = distributed_lib.ReplicationStrategy()
      self._iteration_builder.placement_strategy = placement_strategy
      yield
    finally:
      self._iteration_builder.placement_strategy = temp_placement_strategy

  @contextlib.contextmanager
  def _call_input_fn_in_new_graph(self, input_fn, mode, config):
    """Calls the given input_fn and yields results within a new graph context.

    Yields features, labels, and hooks from the result of an Estimator input_fn.

    Args:
      input_fn: a function that takes no arguments and returns one of:
        * A 'tf.data.Dataset' object: Outputs of `Dataset` object must be a
          tuple (features, labels) with same constraints as below.
        * A tuple (features, labels): Where `features` is a `Tensor` or a
          dictionary of string feature name to `Tensor` and `labels` is a
          `Tensor` or a dictionary of string label name to `Tensor`. Both
          `features` and `labels` are consumed by `model_fn`. They should
          satisfy the expectation of `model_fn` from inputs.
      mode: Defines whether this is training, evaluation or prediction. See
        `ModeKeys`.
      config: The current `tf.estimator.RunConfig`.

    Yields:
      Tuple of features, labels, and input_hooks, where features are as
      described above, labels are as described above or None, and input_hooks
      are a list of SessionRunHooks to be included when running.

    Raises:
      ValueError: if the result is a list or tuple of length != 2.
    """

    from tensorflow_estimator.python.estimator import util  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top

    with tf.Graph().as_default() as g:
      tf_compat.v1.set_random_seed(config.tf_random_seed)
      # Create global step before calling model_fn as does superclass.
      self._create_and_assert_global_step(g)
      with tf.device("/cpu:0"):
        input_fn_outs = input_fn()
      yield util.parse_input_fn_result(input_fn_outs)

  def _create_temp_run_config(self, temp_model_dir):
    # type: (Text) -> tf.estimator.RunConfig
    """Creates a temp `RunConfig` for the bookkeeping phase."""

    config = self.config
    return tf.estimator.RunConfig(
        model_dir=temp_model_dir,
        tf_random_seed=config.tf_random_seed,
        session_config=config.session_config,
        protocol=config.protocol)

  def _create_temp_estimator(self, config, **create_model_fn_args):
    # type: (tf.estimator.RunConfig, Any[...]) -> tf.estimator.Estimator  # pylint:disable=line-too-long
    """Creates a temp `Estimator` to grow the graph for the next iteration."""

    return tf.estimator.Estimator(
        model_fn=self._create_model_fn(**create_model_fn_args),
        config=config,
        warm_start_from=self._warm_start_settings)

  def _execute_bookkeeping_phase(self, train_input_fn, iteration_number,
                                 train_hooks, checkpoint_path):
    """Run the AdaNet bookkeeping phase to prepare the next iteration.

    This method creates a TensorFlow graph up to three times:
      1. To evaluate all candidate ensembles to find the best one.
      2. To materialize reports and store them to disk (if report_materializer
         exists).
      3. To grow the TensorFlow graph and overwrite the model directory's
         checkpoint with the next iteration's ops.

    Args:
      train_input_fn: The input_fn used during training.
      iteration_number: Integer current iteration number.
      train_hooks: List of `SessionRunHook` passed for training.
      checkpoint_path: Path to the checkpoint to restore from.
    """

    next_iteration_number = iteration_number + 1
    logging.info("Preparing iteration %s:", next_iteration_number)

    if self._evaluator:
      evaluator_input_fn = self._evaluator.input_fn
    else:
      evaluator_input_fn = train_input_fn

    best_ensemble_index = self._execute_candidate_evaluation_phase(
        evaluator_input_fn,
        export_best_architecture=True,
        checkpoint_path=checkpoint_path,
        hooks=train_hooks)
    self._execute_report_materialization_phase(
        best_ensemble_index, checkpoint_path=checkpoint_path, hooks=train_hooks)
    self._execute_graph_growing_phase(train_input_fn, train_hooks,
                                      checkpoint_path)

    logging.info("Finished preparing iteration %s.", next_iteration_number)

  def _execute_candidate_evaluation_phase(self, evaluator_input_fn,
                                          export_best_architecture,
                                          checkpoint_path, hooks):
    """Evaluates and chooses the best ensemble for this iteration.

    Args:
      evaluator_input_fn: The input_fn for evaluation.
      export_best_architecture: Boolean whether to persist the best ensemble's
        architecture to the model_dir.
      checkpoint_path: Path to the checkpoint to restore from.
      hooks: A list of `tf.estimator.SessionRunHook`s.

    Returns:
      Integer index of the best ensemble withing the list of candidate ensembles
      for the current iteration.
    """

    logging.info("Evaluating candidates...")
    config = self.config
    mode = tf.estimator.ModeKeys.EVAL
    with self._call_input_fn_in_new_graph(evaluator_input_fn, mode,
                                          config) as (features, labels,
                                                      input_hooks):
      current_iteration, _ = self._create_iteration(
          features,
          labels,
          mode,
          config,
          is_growing_phase=False,
          checkpoint_path=checkpoint_path,
          hooks=hooks)
      best_ensemble_index = self._get_best_ensemble_index(
          current_iteration, input_hooks, checkpoint_path)
      architecture = current_iteration.candidates[
          best_ensemble_index].ensemble_spec.architecture
    if export_best_architecture:
      iteration_number = self._checkpoint_iteration_number(checkpoint_path)
      new_architecture_filename = self._architecture_filename(iteration_number)
      logging.info("Exporting best ensemble architecture to %s",
                   new_architecture_filename)
      self._save_architecture(new_architecture_filename, architecture,
                              checkpoint_path)
    logging.info("Done evaluating candidates.")

    return best_ensemble_index

  def _execute_report_materialization_phase(self, best_ensemble_index,
                                            checkpoint_path, hooks):
    """Materializes and store subnetwork reports."""

    if not self._report_materializer:
      return

    logging.info("Materializing reports...")
    input_fn = self._report_materializer.input_fn
    mode = tf.estimator.ModeKeys.EVAL
    config = self.config
    with self._call_input_fn_in_new_graph(input_fn, mode,
                                          config) as (features, labels,
                                                      input_hooks):
      current_iteration, _ = self._create_iteration(
          features,
          labels,
          mode,
          config,
          is_growing_phase=False,
          checkpoint_path=checkpoint_path,
          hooks=hooks)
      self._materialize_report(current_iteration, input_hooks,
                               best_ensemble_index, checkpoint_path)
    logging.info("Done materializing reports.")

  def _execute_graph_growing_phase(self, train_input_fn, train_hooks,
                                   checkpoint_path):
    """Grows the tensorflow graph for the next iteration.

    Normally the MonitoredTrainingSession does not allow one to add new ops to
    the TensorFlow graph once training starts. To get around this limitation,
    create the graph for the next iteration and overwrite the model directory
    checkpoint with the expanded graph.

    Args:
      train_input_fn: The input_fn used during training.
      train_hooks: List of `SessionRunHook` passed for training.
      checkpoint_path: Path of the checkpoint to use for restoring variables.
    """

    logging.info("Adapting graph and incrementing iteration number...")
    config = self.config
    temp_model_dir = os.path.join(self.model_dir, "temp_model_dir")
    if not tf.io.gfile.exists(temp_model_dir):
      tf.io.gfile.makedirs(temp_model_dir)
    # Since deleting a model_dir can fail, we need each temporary directory to
    # be unique. So we use the UTC time when creating it.
    time_in_millis = int(time.time() * 1000)
    temp_model_sub_dir = os.path.join(temp_model_dir, str(time_in_millis))
    temp_run_config = config.replace(model_dir=temp_model_sub_dir)
    temp_estimator = self._create_temp_estimator(
        config=temp_run_config,
        is_growing_phase=True,
        is_inside_training_loop=True,
        checkpoint_path=checkpoint_path,
        hooks=train_hooks)

    _copy_recursively(
        os.path.join(self._model_dir, "assets"),
        os.path.join(temp_model_sub_dir, "assets"))

    # Do not train with any saving_listeners since this is just a temporary
    # estimator.
    temp_estimator.train(
        input_fn=train_input_fn,
        max_steps=1,
        hooks=self._process_hooks_for_growing_phase(train_hooks),
        saving_listeners=None)

    _copy_recursively(
        os.path.join(temp_model_sub_dir, "assets"),
        os.path.join(self._model_dir, "assets"))

    _delete_directory(temp_model_dir)
    logging.info("Done adapting graph and incrementing iteration number.")

  def _architecture_filename(self, iteration_number):
    # type: (int) -> Text
    """Returns the filename of the given iteration's frozen graph."""

    frozen_checkpoint = os.path.join(self.model_dir, "architecture")
    return "{}-{}.json".format(frozen_checkpoint, iteration_number)

  def _get_best_ensemble_index(self,
                               current_iteration,
                               input_hooks,
                               checkpoint_path=None):
    # type: (_Iteration, Sequence[tf_compat.SessionRunHook], Text) -> int
    """Returns the best candidate ensemble's index in this iteration.

    Evaluates the ensembles using an `Evaluator` when provided. Otherwise,
    it returns the index of the best candidate as defined by the `_Iteration`.

    Args:
      current_iteration: Current `_Iteration`.
      input_hooks: List of SessionRunHooks to be included when running.
      checkpoint_path: Checkpoint to use when determining the best index.

    Returns:
      Index of the best ensemble in the iteration's list of `_Candidates`.
    """
    # AdaNet Replay.
    if self._replay_config:
      best_index = self._replay_config.get_best_ensemble_index(
          current_iteration.number)
      if best_index is not None:
        return best_index

    # Skip the evaluation phase when there is only one candidate subnetwork.
    if len(current_iteration.candidates) == 1:
      logging.info("'%s' is the only ensemble",
                   current_iteration.candidates[0].ensemble_spec.name)
      return 0

    # The zero-th index candidate at iteration t>0 is always the
    # previous_ensemble.
    if current_iteration.number > 0 and self._force_grow and (len(
        current_iteration.candidates) == 2):
      logging.info("With `force_grow` enabled, '%s' is the only ensemble",
                   current_iteration.candidates[1].ensemble_spec.name)
      return 1

    logging.info("Starting ensemble evaluation for iteration %s",
                 current_iteration.number)
    for hook in input_hooks:
      hook.begin()
    with tf_compat.v1.Session(config=self.config.session_config) as sess:
      init = tf.group(
          tf_compat.v1.global_variables_initializer(),
          tf_compat.v1.local_variables_initializer(),
          tf_compat.v1.tables_initializer(),
          current_iteration.estimator_spec.scaffold.local_init_op if isinstance(
              current_iteration.estimator_spec,
              tf.estimator.EstimatorSpec) else tf.no_op())
      sess.run(init)

      if self._enable_v2_checkpoint:
        status = current_iteration.checkpoint.restore(checkpoint_path)
        status.expect_partial()  # Optional sanity checks.
        status.initialize_or_restore(sess)
      else:
        saver = tf_compat.v1.train.Saver(sharded=True)
        saver.restore(sess, checkpoint_path)

      coord = tf.train.Coordinator()
      for hook in input_hooks:
        hook.after_create_session(sess, coord)

      tf_compat.v1.train.start_queue_runners(sess=sess, coord=coord)
      ensemble_metrics = []
      for candidate in current_iteration.candidates:
        metrics = candidate.ensemble_spec.eval_metrics.eval_metrics_ops()
        metrics["adanet_loss"] = tf_compat.v1.metrics.mean(
            candidate.ensemble_spec.adanet_loss)
        ensemble_metrics.append(metrics)
      if self._evaluator:
        metric_name = self._evaluator.metric_name
        metrics = self._evaluator.evaluate(sess, ensemble_metrics)
        objective_fn = self._evaluator.objective_fn
      else:
        metric_name = "adanet_loss"
        metrics = sess.run(
            [c.adanet_loss for c in current_iteration.candidates])
        objective_fn = np.nanargmin

      values = []
      for i in range(len(current_iteration.candidates)):
        ensemble_name = current_iteration.candidates[i].ensemble_spec.name
        values.append("{}/{} = {:.6f}".format(metric_name, ensemble_name,
                                              metrics[i]))
      logging.info("Computed ensemble metrics: %s", ", ".join(values))
      if self._force_grow and current_iteration.number > 0:
        logging.info(
            "The `force_grow` override is enabled, so the "
            "the performance of the previous ensemble will be ignored.")
        # NOTE: The zero-th index candidate at iteration t>0 is always the
        # previous_ensemble.
        metrics = metrics[1:]
        index = objective_fn(metrics) + 1
      else:
        index = objective_fn(metrics)
    logging.info("Finished ensemble evaluation for iteration %s",
                 current_iteration.number)
    logging.info("'%s' at index %s is the best ensemble",
                 current_iteration.candidates[index].ensemble_spec.name, index)
    return index

  def _materialize_report(self, current_iteration, input_hooks,
                          best_ensemble_index, checkpoint_path):
    """Generates reports as defined by `Builder`s.

    Materializes the Tensors and metrics defined in the `Builder`s'
    `build_subnetwork_report` method using `ReportMaterializer`, and stores
    them to disk using `_ReportAccessor`.

    Args:
      current_iteration: Current `_Iteration`.
      input_hooks: List of SessionRunHooks to be included when running.
      best_ensemble_index: Integer index of the best candidate ensemble.
      checkpoint_path: Path of the checkpoint to use.
    """

    logging.info("Starting metric logging for iteration %s",
                 current_iteration.number)

    best_candidate = current_iteration.candidates[best_ensemble_index]
    best_architecture = best_candidate.ensemble_spec.architecture
    included_subnetwork_names = [
        name for i, name in best_architecture.subnetworks
        if i == current_iteration.number
    ]
    for hook in input_hooks:
      hook.begin()
    if self._enable_v2_checkpoint:
      status = current_iteration.checkpoint.restore(checkpoint_path)
      # Verify that restoring subset of ops from previous iteration works.
      status.expect_partial()  # Optional sanity checks.
    with tf_compat.v1.Session(config=self.config.session_config) as sess:
      init = tf.group(
          tf_compat.v1.global_variables_initializer(),
          tf_compat.v1.local_variables_initializer(),
          tf_compat.v1.tables_initializer(),
          current_iteration.estimator_spec.scaffold.local_init_op if isinstance(
              current_iteration.estimator_spec,
              tf.estimator.EstimatorSpec) else tf.no_op())
      sess.run(init)

      if self._enable_v2_checkpoint:
        status.initialize_or_restore(sess)
      else:
        saver = tf_compat.v1.train.Saver(sharded=True)
        saver.restore(sess, checkpoint_path)

      coord = tf.train.Coordinator()
      for hook in input_hooks:
        hook.after_create_session(sess, coord)

      tf_compat.v1.train.start_queue_runners(sess=sess, coord=coord)
      materialized_reports = (
          self._report_materializer.materialize_subnetwork_reports(
              sess, current_iteration.number,
              current_iteration.subnetwork_reports, included_subnetwork_names))
      self._report_accessor.write_iteration_report(current_iteration.number,
                                                   materialized_reports)

    logging.info("Finished saving subnetwork reports for iteration %s",
                 current_iteration.number)

  def _process_hooks_for_growing_phase(self, hooks):
    """Processes hooks which will run during the graph growing phase.

    In particular the following things are done:
      - CheckpointSaverHooks are filtered out since they are not intended to
        run between training runs and will cause errors. We also reset the
        CheckpointSaverHooks' Saver between iterations, see b/122795064 for more
        details.
      - Decorate the remaining hooks with _GraphGrowingHookDecorator to only run
        the begin() and end() methods during the graph growing phase.

    Args:
      hooks: The list of `SessionRunHooks` to process.

    Returns:
      The processed hooks which should run during the growing phase.
    """

    processed_hooks = []
    for hook in hooks:
      # Reset CheckpointSaverHooks' Saver and filter out.
      if isinstance(hook, tf_compat.CheckpointSaverHook):
        hook._saver = None  # pylint: disable=protected-access
        continue
      # Do not decorate the _OverwriteCheckpointHook since it should always
      # run during the graph growing phase.
      if not isinstance(hook, _OverwriteCheckpointHook):
        hook = _GraphGrowingHookDecorator(hook)
      processed_hooks.append(hook)
    return processed_hooks

  def _training_chief_hooks(self, current_iteration, training):
    """Returns chief-only training hooks to be run this iteration.

    Args:
      current_iteration: Current `_Iteration`.
      training: Whether in training mode.

    Returns:
      A list of `SessionRunHook` instances.
    """

    if not training:
      return []

    training_hooks = []
    if tf_compat.is_v2_behavior_enabled():
      # Use V2 summaries and hook when user is using TF 2 behavior.
      training_hooks.append(
          _SummaryV2SaverHook(
              current_iteration.summaries,
              save_steps=self.config.save_summary_steps))
    else:
      # Fallback to V1 summaries.
      for summary in current_iteration.summaries:
        output_dir = self.model_dir
        if summary.scope:
          output_dir = os.path.join(output_dir, summary.namespace,
                                    summary.scope)
        summary_saver_hook = tf_compat.SummarySaverHook(
            save_steps=self.config.save_summary_steps,
            output_dir=output_dir,
            summary_op=summary.merge_all())
        training_hooks.append(summary_saver_hook)
    training_hooks += list(
        current_iteration.estimator_spec.training_chief_hooks)
    return training_hooks

  def _training_hooks(self, current_iteration, training,
                      iteration_number_tensor, previous_iteration_vars,
                      is_growing_phase):
    """Returns training hooks to be run on all workers and chief this iteration.

    Args:
      current_iteration: Current `_Iteration`.
      training: Whether in training mode.
      iteration_number_tensor: An int tensor of the current AdaNet iteraiton.
      previous_iteration_vars: The variables of the previous iteration to be
        restored by the _OverwriteCheckpointHook. If empty, no
        _OverwriteCheckpointHook will be created.
      is_growing_phase: Whether we are in the AdaNet graph growing phase.

    Returns:
      A list of `SessionRunHook` instances.
    """

    if not training:
      return []

    def after_fn():
      self._iteration_ended = True

    training_hooks = list(current_iteration.estimator_spec.training_hooks) + [
        _StopAfterTrainingHook(current_iteration, after_fn=after_fn)
    ]

    if is_growing_phase:
      training_hooks.append(
          _OverwriteCheckpointHook(current_iteration, iteration_number_tensor,
                                   previous_iteration_vars, self.config,
                                   self._enable_v2_checkpoint))
    return training_hooks

  def _evaluation_hooks(self, current_iteration, training, evaluation_name):
    """Returns evaluation hooks for this iteration.

    Args:
      current_iteration: Current `_Iteration`.
      training: Whether in training mode.
      evaluation_name: String name to append to the eval directory.

    Returns:
      A list of `SessionRunHook` instances.
    """

    if training:
      return []
    evaluation_hooks = []
    for subnetwork_spec in current_iteration.subnetwork_specs:
      evaluation_hooks.append(
          self._create_eval_metric_saver_hook(
              subnetwork_spec.eval_metrics,
              subnetwork_spec.name,
              kind="subnetwork",
              evaluation_name=evaluation_name))
    for candidate in current_iteration.candidates:
      evaluation_hooks.append(
          self._create_eval_metric_saver_hook(
              candidate.ensemble_spec.eval_metrics,
              candidate.ensemble_spec.name,
              kind="ensemble",
              evaluation_name=evaluation_name))
    return evaluation_hooks

  def _create_eval_metric_saver_hook(self, eval_metrics, name, kind,
                                     evaluation_name):
    eval_subdir = "eval"
    if evaluation_name:
      eval_subdir = "eval_{}".format(evaluation_name)
    return _EvalMetricSaverHook(
        name=name,
        kind=kind,
        eval_metrics=eval_metrics,
        output_dir=os.path.join(self.model_dir, kind, name, eval_subdir))

  def _save_architecture(self, filename, architecture, checkpoint_path):
    # type: (Text, _Architecture, Text) -> None
    """Persists the ensemble's architecture in a serialized format.

    Writes to a text file with one subnetwork's iteration number and name
    per line.

    Args:
      filename: String filename to persist the ensemble architecture.
      architecture: Target `_Architecture` instance.
      checkpoint_path: Path of the checkpoint to use.
    """

    # Make directories since model_dir may not have been created yet.
    tf.io.gfile.makedirs(os.path.dirname(filename))
    iteration_number = self._checkpoint_iteration_number(checkpoint_path)
    global_step = self._checkpoint_global_step(checkpoint_path)
    serialized_architecture = architecture.serialize(iteration_number,
                                                     global_step)
    logging.info("Saving architecture to %s:\n%s", filename,
                 serialized_architecture)
    with tf.io.gfile.GFile(filename, "w") as record_file:
      record_file.write(serialized_architecture)

  def _read_architecture(self, filename):
    # type: (Text) -> _Architecture
    """Reads an ensemble architecture from disk.

    Assumes the file was written with `_save_architecture`.

    Args:
      filename: String filename where features were recorded.

    Returns:
      An `_Architecture` instance.

    Raises:
      OSError: When file not found at `filename`.
    """

    if not tf.io.gfile.exists(filename):
      raise OSError(errno.ENOENT, os.strerror(errno.ENOENT), filename)

    with tf.io.gfile.GFile(filename, "rb") as gfile:
      return _Architecture.deserialize(gfile.read().decode())

  def _find_ensemble_candidate(self, ensemble_candidate_name,
                               ensemble_candidates):
    # type: (Text, Sequence[ensemble_lib.Candidate]) -> ensemble_lib.Candidate
    """Returns the ensemble candidate with the given name."""

    for ensemble_candidate in ensemble_candidates:
      if ensemble_candidate.name == ensemble_candidate_name:
        return ensemble_candidate
    raise ValueError(
        "Could not find a matching ensemble candidate with name '{}'. "
        "Are you sure the `adanet.ensemble.Strategy` is deterministic?".format(
            ensemble_candidate_name))

  # TODO: Refactor architecture building logic to its own module.
  def _architecture_ensemble_spec(self, architecture, iteration_number,
                                  features, mode, labels,
                                  previous_ensemble_spec, config,
                                  previous_iteration, hooks):
    """Returns an `_EnsembleSpec` with the given architecture.

    Creates the ensemble architecture by calling `generate_subnetworks` on
    `self._subnetwork_generator` and only calling `build_subnetwork` on
    `Builders` included in the architecture. Once their ops are created, their
    variables are restored from the checkpoint.

    Args:
      architecture: An `_Architecture` instance.
      iteration_number: Integer current iteration number.
      features: Dictionary of `Tensor` objects keyed by feature name.
      mode: Defines whether this is training, evaluation or prediction. See
        `ModeKeys`.
      labels: Labels `Tensor` or a dictionary of string label name to `Tensor`
        (for multi-head). Can be `None`.
      previous_ensemble_spec: The `_EnsembleSpec` for the previous iteration.
        Will be `None` for the first iteration.
      config: The current `tf.estimator.RunConfig`.
      previous_iteration: The previous `_Iteration`.
      hooks: A list of `tf.estimator.SessionRunHook`s.

    Returns:
      An `EnsembleSpec` instance for the given architecture.

    Raises:
      ValueError: If a subnetwork from `architecture` is not found in the
        generated candidate `Builders` of the specified iteration.
    """

    previous_ensemble = None
    if previous_ensemble_spec:
      previous_ensemble = previous_ensemble_spec.ensemble
    current_iteration = previous_iteration
    for t, names in architecture.subnetworks_grouped_by_iteration:
      if t != iteration_number:
        continue
      previous_ensemble_reports, all_reports = [], []
      if self._report_materializer:
        previous_ensemble_reports, all_reports = (
            self._collate_subnetwork_reports(iteration_number))
      generated_subnetwork_builders = (
          self._call_generate_candidates(
              previous_ensemble=previous_ensemble,
              iteration_number=iteration_number,
              previous_ensemble_reports=previous_ensemble_reports,
              all_reports=all_reports,
              config=config))
      subnetwork_builder_names = {
          b.name: b for b in generated_subnetwork_builders
      }
      rebuild_subnetwork_builders = []
      for name in names:
        if name not in subnetwork_builder_names:
          raise ValueError(
              "Required subnetwork builder is missing for iteration {}: {}"
              .format(iteration_number, name))
        rebuild_subnetwork_builders.append(subnetwork_builder_names[name])
      previous_ensemble_summary = None
      previous_ensemble_subnetwork_builders = None
      if previous_ensemble_spec:
        # Always skip summaries when rebuilding previous architecture,
        # since they are not useful.
        previous_ensemble_summary = self._summary_maker(
            namespace="ensemble",
            scope=previous_ensemble_spec.name,
            skip_summary=True)
        previous_ensemble_subnetwork_builders = (
            previous_ensemble_spec.subnetwork_builders)
      ensemble_candidates = []
      for ensemble_strategy in self._ensemble_strategies:
        ensemble_candidates += ensemble_strategy.generate_ensemble_candidates(
            rebuild_subnetwork_builders, previous_ensemble_subnetwork_builders)
      ensemble_candidate = self._find_ensemble_candidate(
          architecture.ensemble_candidate_name, ensemble_candidates)
      current_iteration = self._iteration_builder.build_iteration(
          base_global_step=architecture.global_step,
          iteration_number=iteration_number,
          ensemble_candidates=[ensemble_candidate],
          subnetwork_builders=rebuild_subnetwork_builders,
          features=features,
          labels=labels,
          mode=mode,
          config=config,
          previous_ensemble_summary=previous_ensemble_summary,
          rebuilding=True,
          rebuilding_ensembler_name=architecture.ensembler_name,
          previous_iteration=current_iteration)
      max_candidates = 2 if previous_ensemble_spec else 1
      assert len(current_iteration.candidates) == max_candidates
      previous_ensemble_spec = current_iteration.candidates[-1].ensemble_spec
      previous_ensemble = previous_ensemble_spec.ensemble
    previous_ensemble_spec.architecture.set_replay_indices(
        architecture.replay_indices)
    return current_iteration

  def _collate_subnetwork_reports(self, iteration_number):
    """Prepares subnetwork.Reports to be passed to Generator.

    Reads subnetwork.MaterializedReports from past iterations,
    collates those that were included in previous_ensemble into
    previous_ensemble_reports as a List of subnetwork.MaterializedReports,
    and collates all reports from previous iterations into all_reports as
    another List of subnetwork.MaterializedReports.

    Args:
      iteration_number: Python integer AdaNet iteration number, starting from 0.

    Returns:
      (previous_ensemble_reports: List<subnetwork.MaterializedReport>,
       materialized_reports: List<MaterializedReport>)
    """

    materialized_reports_all = (self._report_accessor.read_iteration_reports())
    previous_ensemble_reports = []
    all_reports = []

    # Since the number of iteration reports changes after the
    # MATERIALIZE_REPORT phase, we need to make sure that we always pass the
    # same reports to the Generator in the same iteration,
    # otherwise the graph that is built in the FREEZE_ENSEMBLE phase would be
    # different from the graph built in the training phase.

    # Iteration 0 should have 0 iteration reports passed to the
    #   Generator, since there are no previous iterations.
    # Iteration 1 should have 1 list of reports for Builders
    #   generated in iteration 0.
    # Iteration 2 should have 2 lists of reports -- one for iteration 0,
    #   one for iteration 1. Note that the list of reports for iteration >= 1
    #   should contain "previous_ensemble", in addition to the
    #   Builders at the start of that iteration.
    # Iteration t should have t lists of reports.

    for i, iteration_reports in enumerate(materialized_reports_all):

      # This ensures that the FREEZE_ENSEMBLE phase does not pass the reports
      # generated in the previous phase of the same iteration to the
      # Generator when building the graph.
      if i >= iteration_number:
        break

      chosen_subnetworks_in_this_iteration = [
          subnetwork_report for subnetwork_report in iteration_reports
          if subnetwork_report.included_in_final_ensemble
      ]
      previous_ensemble_reports += chosen_subnetworks_in_this_iteration
      all_reports.extend(iteration_reports)

    return previous_ensemble_reports, all_reports

  def _train_op(self, iteration_estimator_spec, is_growing_phase):
    """Returns the iteration train op or tf.no_op if growing the graph."""

    train_op = iteration_estimator_spec.train_op
    if is_growing_phase:
      train_op = tf_compat.v1.train.get_global_step().assign_add(1)
      # NOTE: some version of TensorFlow check that train_op is an Op or Tensor
      # and crash if train_op is a Variable.
      train_op = tf.identity(train_op)
    return train_op

  def _create_estimator_spec(self, current_iteration, mode,
                             iteration_number_tensor, previous_iteration_vars,
                             is_growing_phase, evaluation_name):
    """Creates the EstimatorSpec which will be returned by _adanet_model_fn."""

    from tensorflow.python.training.tracking import graph_view  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top

    training = mode == tf.estimator.ModeKeys.TRAIN
    iteration_estimator_spec = current_iteration.estimator_spec
    training_chief_hooks = self._training_chief_hooks(current_iteration,
                                                      training)
    training_hooks = self._training_hooks(current_iteration, training,
                                          iteration_number_tensor,
                                          previous_iteration_vars,
                                          is_growing_phase)
    if is_growing_phase:
      training_chief_hooks = self._process_hooks_for_growing_phase(
          training_chief_hooks)
      training_hooks = self._process_hooks_for_growing_phase(training_hooks)

    saver = None
    if self._enable_v2_checkpoint:
      saver = tf_compat.v1.train.Saver(
          var_list=graph_view.ObjectGraphView(
              current_iteration.checkpoint).frozen_saveable_objects(),
          sharded=True,
          max_to_keep=self.config.keep_checkpoint_max)
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=iteration_estimator_spec.predictions,
        loss=iteration_estimator_spec.loss,
        train_op=self._train_op(iteration_estimator_spec, is_growing_phase),
        eval_metric_ops=iteration_estimator_spec.eval_metric_ops,
        training_chief_hooks=training_chief_hooks,
        training_hooks=training_hooks,
        evaluation_hooks=self._evaluation_hooks(current_iteration, training,
                                                evaluation_name),
        scaffold=tf_compat.v1.train.Scaffold(
            summary_op=tf.constant(""),
            saver=saver,
            local_init_op=current_iteration.estimator_spec.scaffold
            .local_init_op if isinstance(current_iteration.estimator_spec,
                                         tf.estimator.EstimatorSpec) else None),
        export_outputs=iteration_estimator_spec.export_outputs)

  def _call_generate_candidates(self, previous_ensemble, iteration_number,
                                previous_ensemble_reports, all_reports, config):
    # Calling low level getargs for py_2_and_3 compatibility.
    defined_args = inspect.getargs(
        self._subnetwork_generator.generate_candidates.__code__).args
    generate_args = dict(
        previous_ensemble=previous_ensemble,
        iteration_number=iteration_number,
        previous_ensemble_reports=previous_ensemble_reports,
        all_reports=all_reports)
    if "config" in defined_args:
      generate_args["config"] = config
    return self._subnetwork_generator.generate_candidates(**generate_args)

  def _create_iteration(self,
                        features,
                        labels,
                        mode,
                        config,
                        is_growing_phase,
                        checkpoint_path,
                        hooks,
                        best_ensemble_index_override=None):
    """Constructs the TF ops and variables for the current iteration.

    Args:
      features: Dictionary of `Tensor` objects keyed by feature name.
      labels: Labels `Tensor` or a dictionary of string label name to `Tensor`
        (for multi-head). Can be `None`.
      mode: Defines whether this is training, evaluation or prediction. See
        `ModeKeys`.
      config: The current `tf.estimator.RunConfig`.
      is_growing_phase: Whether we are in the AdaNet graph growing phase.
      checkpoint_path: Path of the checkpoint to use. When `None`, this method
        uses the latest checkpoint instead.
      hooks: A list of `tf.estimator.SessionRunHooks`.
      best_ensemble_index_override: Integer index to identify the latest
        iteration's best ensemble candidate instead of computing the best
        ensemble index dynamically conditional on the ensemble AdaNet losses.

    Returns:
      A two-tuple of the current `_Iteration`, and list of variables from
        the previous iteration for restoring during the graph growing phase.
    """

    # Use the evaluation checkpoint path to get both the iteration number and
    # variable values to avoid any race conditions between the first and second
    # checkpoint reads.
    iteration_number = self._checkpoint_iteration_number(checkpoint_path)

    if mode == tf.estimator.ModeKeys.EVAL and checkpoint_path is None:
      # This should only happen during some tests, so we log instead of
      # asserting here.
      logging.warning("There are no checkpoints available during evaluation. "
                      "Variables will be initialized to their defaults.")

    if is_growing_phase:
      assert mode == tf.estimator.ModeKeys.TRAIN
      assert config.is_chief
      iteration_number += 1

    # Only record summaries when training.
    skip_summaries = (mode != tf.estimator.ModeKeys.TRAIN or is_growing_phase)
    base_global_step = 0
    with tf_compat.v1.variable_scope("adanet"):
      previous_iteration = None
      previous_ensemble_spec = None
      previous_ensemble = None
      previous_ensemble_summary = None
      previous_ensemble_subnetwork_builders = None
      architecture = None
      for i in range(iteration_number):
        architecture_filename = self._architecture_filename(i)
        if not tf.io.gfile.exists(architecture_filename):
          continue
        architecture = self._read_architecture(architecture_filename)
        logging.info(
            "Importing architecture from %s: [%s].", architecture_filename,
            ", ".join(
                sorted([
                    "'{}:{}'".format(t, n)
                    for t, n in architecture.subnetworks_grouped_by_iteration
                ])))
        base_global_step = architecture.global_step
        previous_iteration = self._architecture_ensemble_spec(
            architecture, i, features, mode, labels, previous_ensemble_spec,
            config, previous_iteration, hooks)
        previous_ensemble_spec = previous_iteration.candidates[-1].ensemble_spec
        previous_ensemble = previous_ensemble_spec.ensemble
        previous_ensemble_summary = self._summary_maker(
            namespace="ensemble",
            scope=previous_ensemble_spec.name,
            skip_summary=skip_summaries)
        previous_ensemble_subnetwork_builders = (
            previous_ensemble_spec.subnetwork_builders)
      previous_iteration_vars = None
      if is_growing_phase:
        # Keep track of the previous iteration variables so we can restore them
        # from the previous checkpoint after growing the graph. After this line,
        # any variables created will not have a matching one in the checkpoint
        # until it gets overwritten.
        # Note: It's not possible to just create a tf.train.Saver here since
        # this code is also run on TPU, which does not support creating Savers
        # inside model_fn.
        previous_iteration_vars = (
            tf_compat.v1.get_collection(tf_compat.v1.GraphKeys.GLOBAL_VARIABLES)
            + tf_compat.v1.get_collection(
                tf_compat.v1.GraphKeys.SAVEABLE_OBJECTS))
      previous_ensemble_reports, all_reports = [], []
      if self._report_materializer:
        previous_ensemble_reports, all_reports = (
            self._collate_subnetwork_reports(iteration_number))

      subnetwork_builders = self._call_generate_candidates(
          previous_ensemble=previous_ensemble,
          iteration_number=iteration_number,
          previous_ensemble_reports=previous_ensemble_reports,
          all_reports=all_reports,
          config=config)
      ensemble_candidates = []
      for ensemble_strategy in self._ensemble_strategies:
        ensemble_candidates += ensemble_strategy.generate_ensemble_candidates(
            subnetwork_builders, previous_ensemble_subnetwork_builders)
      current_iteration = self._iteration_builder.build_iteration(
          base_global_step=base_global_step,
          iteration_number=iteration_number,
          ensemble_candidates=ensemble_candidates,
          subnetwork_builders=subnetwork_builders,
          features=features,
          labels=labels,
          mode=mode,
          config=config,
          previous_ensemble_summary=previous_ensemble_summary,
          best_ensemble_index_override=best_ensemble_index_override,
          previous_iteration=previous_iteration)
    return current_iteration, previous_iteration_vars

  def _create_model_fn(self,
                       is_growing_phase=False,
                       is_inside_training_loop=False,
                       is_export=False,
                       evaluation_name=None,
                       best_ensemble_index=None,
                       checkpoint_path=None,
                       hooks=None):
    """Creates the AdaNet model_fn.

    Args:
      is_growing_phase: Whether the model_fn will be called in the growing
        phase.
      is_inside_training_loop: Whether the model_fn will be called inside the
        AdaNet training loop.
      is_export: Whether the model_fn will be called from functions which export
        a SavedModel.
      evaluation_name: String name to append to the eval directory.
      best_ensemble_index: The index of the best performing ensemble in the
        latest AdaNet iteration.
      checkpoint_path: The checkpoint path from which to restore variables.
      hooks: Extra hooks to use when creating the graph.

    Returns:
      The adanet_model_fn which will create the computation graph when called.
    """

    del is_export  # Unused.

    def _adanet_model_fn(features, labels, mode, params, config):
      """AdaNet model_fn.

      Args:
        features: Dictionary of `Tensor` objects keyed by feature name.
        labels: Labels `Tensor` or a dictionary of string label name to `Tensor`
          (for multi-head). Can be `None`.
        mode: Defines whether this is training, evaluation or prediction. See
          `ModeKeys`.
        params: A dict of parameters.
        config: The current `tf.estimator.RunConfig`.

      Returns:
        A `EstimatorSpec` instance.

      Raises:
        UserWarning: When calling model_fn directly in TRAIN mode.
      """

      del params  # Unused.

      path = checkpoint_path or tf.train.latest_checkpoint(self.model_dir)

      training = mode == tf.estimator.ModeKeys.TRAIN
      if training and not is_inside_training_loop:
        raise UserWarning(
            "The adanet.Estimator's model_fn should not be called directly in "
            "TRAIN mode, because its behavior is undefined outside the context "
            "of its `train` method. If you are trying to add custom metrics "
            "with `tf.contrib.estimator.add_metrics`, pass the `metric_fn` to "
            "this `Estimator's` constructor instead.")

      current_iteration, previous_iteration_vars = self._create_iteration(
          features,
          labels,
          mode,
          config,
          is_growing_phase,
          checkpoint_path=path,
          hooks=hooks,
          best_ensemble_index_override=best_ensemble_index)

      # Variable which allows us to read the current iteration from a
      # checkpoint. This must be created here so it is available when calling
      # _execute_bookkeeping_phase after the first iteration.
      iteration_number_tensor = None
      if not self._enable_v2_checkpoint:
        iteration_number_tensor = tf_compat.v1.get_variable(
            self._Keys.CURRENT_ITERATION,
            shape=[],
            dtype=tf.int64,
            initializer=tf_compat.v1.zeros_initializer(),
            trainable=False)

      return self._create_estimator_spec(
          current_iteration,
          mode,
          iteration_number_tensor,
          previous_iteration_vars,
          is_growing_phase,
          evaluation_name=evaluation_name)

    return _adanet_model_fn
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  Source code for adanet.core.evaluator

"""An AdaNet evaluator implementation in Tensorflow using a single graph.

Copyright 2018 The AdaNet Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

from absl import logging
from adanet import tf_compat
import numpy as np
import tensorflow.compat.v2 as tf


# TODO: Remove uses of Evaluator once AdaNet Ranker is implemented.
[docs]class Evaluator(object):
  """Evaluates candidate ensemble performance."""

[docs]  class Objective(object):
    """The Evaluator objective for the metric being optimized.

    Two objectives are currently supported:
      - MINIMIZE: Lower is better for the metric being optimized.
      - MAXIMIZE: Higher is better for the metric being optimized.
    """

    MINIMIZE = "minimize"
    MAXIMIZE = "maximize"


[docs]  def __init__(self,
               input_fn,
               metric_name="adanet_loss",
               objective=Objective.MINIMIZE,
               steps=None):
    """Initializes a new Evaluator instance.

    Args:
      input_fn: Input function returning a tuple of: features - Dictionary of
        string feature name to `Tensor`. labels - `Tensor` of labels.
      metric_name: The name of the evaluation metrics to use when choosing the
        best ensemble. Must refer to a valid evaluation metric.
      objective: Either `Objective.MINIMIZE` or `Objective.MAXIMIZE`.
      steps: Number of steps for which to evaluate the ensembles. If an
        `OutOfRangeError` occurs, evaluation stops. If set to None, will iterate
        the dataset until all inputs are exhausted.

    Returns:
      An :class:`adanet.Evaluator` instance.
    """
    self._input_fn = input_fn
    self._steps = steps
    self._metric_name = metric_name
    self._objective = objective
    if objective == self.Objective.MINIMIZE:
      self._objective_fn = np.nanargmin
    elif objective == self.Objective.MAXIMIZE:
      self._objective_fn = np.nanargmax
    else:
      raise ValueError(
          "Evaluator objective must be one of MINIMIZE or MAXIMIZE.")


  @property
  def input_fn(self):
    """Return the input_fn."""
    return self._input_fn

  @property
  def steps(self):
    """Return the number of evaluation steps."""
    return self._steps

  @property
  def metric_name(self):
    """Returns the name of the metric being optimized."""
    return self._metric_name

  @property
  def objective_fn(self):
    """Returns a fn which selects the best metric based on the objective."""
    return self._objective_fn

[docs]  def evaluate(self, sess, ensemble_metrics):
    """Evaluates the given AdaNet objectives on the data from `input_fn`.

    The candidates are fed the same batches of features and labels as
    provided by `input_fn`, and their losses are computed and summed over
    `steps` batches.

    Args:
      sess: `Session` instance with most recent variable values loaded.
      ensemble_metrics: A list dictionaries of `tf.metrics` for each candidate
        ensemble.

    Returns:
      List of evaluated metrics.
    """

    evals_completed = 0
    if self.steps is None:
      logging_frequency = 1000
    elif self.steps < 10:
      logging_frequency = 1
    else:
      logging_frequency = math.floor(self.steps / 10.)

    objective_metrics = [em[self._metric_name] for em in ensemble_metrics]

    sess.run(tf_compat.v1.local_variables_initializer())
    while True:
      if self.steps is not None and evals_completed == self.steps:
        break
      try:
        evals_completed += 1
        if (evals_completed % logging_frequency == 0 or
            self.steps == evals_completed):
          logging.info("Ensemble evaluation [%d/%s]", evals_completed,
                       self.steps or "??")
        sess.run(objective_metrics)
      except tf.errors.OutOfRangeError:
        logging.info("Encountered end of input after %d evaluations",
                     evals_completed)
        break

    # Evaluating the first element is idempotent for metric tuples.
    return sess.run([metric[0] for metric in objective_metrics])
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  Source code for adanet.core.report_materializer

"""Materializes the subnetwork.Reports.

Copyright 2018 The AdaNet Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

from absl import logging
from adanet import subnetwork
from adanet import tf_compat
import tensorflow.compat.v2 as tf


[docs]class ReportMaterializer(object):
  """Materializes reports.

  Specifically it materializes a subnetwork's :class:`adanet.subnetwork.Report`
  instances into :class:`adanet.subnetwork.MaterializedReport` instances.

  Requires an input function `input_fn` that returns a tuple of:

  * features: Dictionary of string feature name to `Tensor`.
  * labels: `Tensor` of labels.

  Args:
    input_fn: The input function.
    steps: Number of steps for which to materialize the ensembles. If an
      `OutOfRangeError` occurs, materialization stops. If set to None, will
      iterate the dataset until all inputs are exhausted.

  Returns:
    A `ReportMaterializer` instance.
  """

  def __init__(self, input_fn, steps=None):
    self._input_fn = input_fn
    self._steps = steps
    super(ReportMaterializer, self).__init__()

  @property
  def input_fn(self):
    """Returns the input_fn that materialize_subnetwork_reports would run on.

    Even though this property appears to be unused, it would be used to build
    the AdaNet model graph inside AdaNet estimator.train(). After the graph is
    built, the queue_runners are started and the initializers are run,
    AdaNet estimator.train() passes its tf.Session as an argument to
    materialize_subnetwork_reports(), thus indirectly making input_fn
    available to materialize_subnetwork_reports.
    """
    return self._input_fn

  @property
  def steps(self):
    """Return the number of steps."""
    return self._steps

[docs]  def materialize_subnetwork_reports(self, sess, iteration_number,
                                     subnetwork_reports,
                                     included_subnetwork_names):
    """Materializes the Tensor objects in subnetwork_reports using sess.

    This converts the Tensors in subnetwork_reports to ndarrays, logs the
    progress, converts the ndarrays to python primitives, then packages them
    into `adanet.subnetwork.MaterializedReports`.

    Args:
      sess: `Session` instance with most recent variable values loaded.
      iteration_number: Integer iteration number.
      subnetwork_reports: Dict mapping string names to `subnetwork.Report`
        objects to be materialized.
      included_subnetwork_names: List of string names of the
        `subnetwork.Report`s that are included in the final ensemble.

    Returns:
      List of `adanet.subnetwork.MaterializedReport` objects.
    """

    # A metric is a tuple where the first element is a Tensor and
    # the second element is an update op. We collate the update ops here.
    metric_update_ops = []
    for subnetwork_report in subnetwork_reports.values():
      for metric_tuple in subnetwork_report.metrics.values():
        metric_update_ops.append(tf_compat.metric_op(metric_tuple)[1])

    # Extract the Tensors to be materialized.
    tensors_to_materialize = {}
    for name, subnetwork_report in subnetwork_reports.items():
      metrics = {
          metric_key: tf_compat.metric_op(metric_tuple)[0]
          for metric_key, metric_tuple in subnetwork_report.metrics.items()
      }
      tensors_to_materialize[name] = {
          "attributes": subnetwork_report.attributes,
          "metrics": metrics
      }

    if self.steps is None:
      logging_frequency = 1000
    elif self.steps < 10:
      logging_frequency = 1
    else:
      logging_frequency = math.floor(self.steps / 10.)

    steps_completed = 0
    while True:
      if self.steps is not None and steps_completed == self.steps:
        break
      try:
        steps_completed += 1
        if (steps_completed % logging_frequency == 0 or
            self.steps == steps_completed):
          logging.info("Report materialization [%d/%s]", steps_completed,
                       self.steps or "??")

        sess.run(metric_update_ops)
      except tf.errors.OutOfRangeError:
        logging.info("Encountered end of input during report materialization")
        break

    materialized_tensors_dict = sess.run(tensors_to_materialize)
    logging.info("Materialized subnetwork_reports.")

    # Convert scalar ndarrays into python primitives, then place them into
    # subnetwork.MaterializedReports.
    materialized_reports = []
    for name, materialized_tensors in materialized_tensors_dict.items():
      attributes = {
          key: value.item() if hasattr(value, "item") else value
          for key, value in materialized_tensors["attributes"].items()
      }
      metrics = {
          key: value.item() if hasattr(value, "item") else value
          for key, value in materialized_tensors["metrics"].items()
      }
      materialized_reports.append(
          subnetwork.MaterializedReport(
              iteration_number=iteration_number,
              name=name,
              hparams=subnetwork_reports[name].hparams,
              attributes=attributes,
              metrics=metrics,
              included_in_final_ensemble=(name in included_subnetwork_names)))
    return materialized_reports
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  Source code for adanet.core.summary

"""Tensorboard summaries for the single graph AdaNet implementation.

Copyright 2018 The AdaNet Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import abc
import contextlib
import os

from absl import logging
from adanet import tf_compat
import six
import tensorflow.compat.v1 as tf_v1
import tensorflow.compat.v2 as tf

# pylint: disable=g-direct-tensorflow-import
from tensorboard import compat
from tensorflow.python.ops import summary_op_util
from tensorflow.python.summary import summary as summary_lib
# pylint: enable=g-direct-tensorflow-import

_DEFAULT_SCOPE = "default"


[docs]@six.add_metaclass(abc.ABCMeta)
class Summary(object):
  """Interface for writing summaries to Tensorboard."""

[docs]  @abc.abstractmethod
  def scalar(self, name, tensor, family=None, description=None):
    """Outputs a `tf.Summary` protocol buffer containing a single scalar value.

    The generated tf.Summary has a Tensor.proto containing the input Tensor.

    Args:
      name: A name for this summary. The summary tag used for TensorBoard will
        be this name prefixed by any active name scopes.
      tensor: A real numeric scalar value, convertible to a float32 Tensor.
      family: Optional; if provided, used as the prefix of the summary tag name,
        which controls the tab name used for display on Tensorboard. DEPRECATED
        in TF 2.
      description: Optional long-form description for this summary, as a
        constant str. Markdown is supported. Defaults to empty.

    Returns:
      A scalar `Tensor` of type `string`. Which contains a `tf.Summary`
      protobuf.

    Raises:
      ValueError: If tensor has the wrong shape or type.
    """


[docs]  @abc.abstractmethod
  def image(self, name, tensor, max_outputs=3, family=None, description=None):
    """Outputs a `tf.Summary` protocol buffer with images.

    The summary has up to `max_outputs` summary values containing images. The
    images are built from `tensor` which must be 4-D with shape `[batch_size,
    height, width, channels]` and where `channels` can be:

    *  1: `tensor` is interpreted as Grayscale.
    *  3: `tensor` is interpreted as RGB.
    *  4: `tensor` is interpreted as RGBA.

    The images have the same number of channels as the input tensor. For float
    input, the values are normalized one image at a time to fit in the range
    `[0, 255]`.  `uint8` values are unchanged.  The op uses two different
    normalization algorithms:

    *  If the input values are all positive, they are rescaled so the largest
    one is 255.
    *  If any input value is negative, the values are shifted so input value 0.0
      is at 127.  They are then rescaled so that either the smallest value is 0,
      or the largest one is 255.

    The `tag` in the outputted tf.Summary.Value protobufs is generated based on
    the
    name, with a suffix depending on the max_outputs setting:

    *  If `max_outputs` is 1, the summary value tag is '*name*/image'.
    *  If `max_outputs` is greater than 1, the summary value tags are
      generated sequentially as '*name*/image/0', '*name*/image/1', etc.

    Args:
      name: A name for this summary. The summary tag used for TensorBoard will
        be this name prefixed by any active name scopes.
      tensor: A Tensor representing pixel data with shape [k, h, w, c], where k
        is the number of images, h and w are the height and width of the images,
        and c is the number of channels, which should be 1, 2, 3, or 4
        (grayscale, grayscale with alpha, RGB, RGBA). Any of the dimensions may
        be statically unknown (i.e., None). Floating point data will be clipped
        to the range [0,1).
      max_outputs: Optional int or rank-0 integer Tensor. At most this many
        images will be emitted at each step. When more than max_outputs many
        images are provided, the first max_outputs many images will be used and
        the rest silently discarded.
      family: Optional; if provided, used as the prefix of the summary tag name,
        which controls the tab name used for display on Tensorboard. DEPRECATED
        in TF 2.
      description: Optional long-form description for this summary, as a
        constant str. Markdown is supported. Defaults to empty.

    Returns:
      A scalar `Tensor` of type `string`. The serialized `tf.Summary` protocol
      buffer.
    """


[docs]  @abc.abstractmethod
  def histogram(self,
                name,
                values,
                family=None,
                buckets=None,
                description=None):
    """Outputs a `tf.Summary` protocol buffer with a histogram.

    Adding a histogram summary makes it possible to visualize your data's
    distribution in TensorBoard. You can see a detailed explanation of the
    TensorBoard histogram dashboard
    [here](https://www.tensorflow.org/get_started/tensorboard_histograms).

    The generated [`tf.Summary`](
    tensorflow/core/framework/summary.proto)
    has one summary value containing a histogram for `values`.

    This op reports an `InvalidArgument` error if any value is not finite.

    Args:
      name: A name for this summary. The summary tag used for TensorBoard will
        be this name prefixed by any active name scopes.
      values: A Tensor of any shape. Must be castable to float64.
      family: Optional; if provided, used as the prefix of the summary tag name,
        which controls the tab name used for display on Tensorboard. DEPRECATED
        in TF 2.
      buckets: Optional positive int. The output will have this many buckets,
        except in two edge cases. If there is no data, then there are no
        buckets. If there is data but all points have the same value, then there
        is one bucket whose left and right endpoints are the same.
      description: Optional long-form description for this summary, as a
        constant str. Markdown is supported. Defaults to empty.

    Returns:
      A scalar `Tensor` of type `string`. The serialized `tf.Summary` protocol
      buffer.
    """


[docs]  @abc.abstractmethod
  def audio(self,
            name,
            tensor,
            sample_rate,
            max_outputs=3,
            family=None,
            encoding=None,
            description=None):
    """Writes an audio summary.

    Args:
      name: A name for this summary. The summary tag used for TensorBoard will
        be this name prefixed by any active name scopes.
      tensor: A Tensor representing audio data with shape [k, t, c], where k is
        the number of audio clips, t is the number of frames, and c is the
        number of channels. Elements should be floating-point values in [-1.0,
        1.0]. Any of the dimensions may be statically unknown (i.e., None).
      sample_rate: An int or rank-0 int32 Tensor that represents the sample
        rate, in Hz. Must be positive.
      max_outputs: Optional int or rank-0 integer Tensor. At most this many
        audio clips will be emitted at each step. When more than max_outputs
        many clips are provided, the first max_outputs many clips will be used
        and the rest silently discarded.
      family: Optional; if provided, used as the prefix of the summary tag name,
        which controls the tab name used for display on Tensorboard. DEPRECATED
        in TF 2.
      encoding: Optional constant str for the desired encoding. Only "wav" is
        currently supported, but this is not guaranteed to remain the default,
        so if you want "wav" in particular, set this explicitly.
      description: Optional long-form description for this summary, as a
        constant str. Markdown is supported. Defaults to empty.

    Returns:
      A scalar `Tensor` of type `string`. The serialized `tf.Summary` protocol
      buffer.
    """




def _strip_scope(name, scope, additional_scope):
  """Returns the name with scope stripped from it."""

  if additional_scope:
    name = name.replace("{}/".format(additional_scope), "")
  if not scope:
    scope = _DEFAULT_SCOPE
  name = name.replace("{}/".format(scope), "", 1)
  return name


class _ScopedSummary(Summary):
  """Records summaries in a given scope.

  Each scope gets assigned a different collection where summary ops gets added.

  This allows Tensorboard to display summaries with different scopes but the
  same name in the same charts.
  """

  def __init__(self, scope=None, skip_summary=False, namespace=None):
    """Initializes a `_ScopedSummary`.

    Args:
      scope: String scope name.
      skip_summary: Whether to record summary ops.
      namespace: Optional string namespace for the summary.

    Returns:
      A `_ScopedSummary` instance.
    """

    if tf_compat.tpu_function.get_tpu_context().number_of_shards:
      logging.log_first_n(
          logging.WARN,
          "Scoped summaries will be skipped since they do not support TPU", 1)
      skip_summary = True

    self._scope = scope
    self._namespace = namespace
    self._additional_scope = None
    self._skip_summary = skip_summary
    self._summary_ops = []
    self._actual_summary_scalar_fn = summary_lib.scalar
    self._actual_summary_image_fn = summary_lib.image
    self._actual_summary_histogram_fn = summary_lib.histogram
    self._actual_summary_audio_fn = summary_lib.audio

  @property
  def scope(self):
    """Returns scope string."""

    return self._scope

  @property
  def namespace(self):
    """Returns namespace string."""

    return self._namespace

  @contextlib.contextmanager
  def current_scope(self):
    """Registers the current context's scope to strip it from summary tags."""

    self._additional_scope = tf_compat.v1.get_default_graph().get_name_scope()
    yield
    self._additional_scope = None

  @contextlib.contextmanager
  def _strip_tag_scope(self):
    """Monkey patches `summary_op_util.summary_scope` to strip tag scopes."""

    original_summary_scope = summary_op_util.summary_scope

    @contextlib.contextmanager
    def strip_tag_scope_fn(name, family=None, default_name=None, values=None):
      tag, scope = (None, None)
      with original_summary_scope(name, family, default_name, values) as (t, s):
        tag = _strip_scope(t, self.scope, self._additional_scope)
        scope = s
      yield tag, scope

    summary_op_util.summary_scope = strip_tag_scope_fn
    yield
    summary_op_util.summary_scope = original_summary_scope

  def _prefix_scope(self, name):
    """Prefixes summary name with scope."""

    if self._scope:
      if name[0] == "/":
        name = name[1:]
      return "{scope}/{name}".format(scope=self._scope, name=name)
    return name

  def scalar(self, name, tensor, family=None):
    """See `Summary`."""

    if self._skip_summary:
      return tf.constant("")

    with self._strip_tag_scope():
      summary = self._actual_summary_scalar_fn(
          name=self._prefix_scope(name),
          tensor=tensor,
          family=family,
          collections=[])
    self._summary_ops.append(summary)
    return summary

  def image(self, name, tensor, max_outputs=3, family=None):
    """See `Summary`."""

    if self._skip_summary:
      return tf.constant("")

    with self._strip_tag_scope():
      summary = self._actual_summary_image_fn(
          name=self._prefix_scope(name),
          tensor=tensor,
          max_outputs=max_outputs,
          family=family,
          collections=[])
    self._summary_ops.append(summary)
    return summary

  def histogram(self, name, values, family=None):
    """See `Summary`."""

    if self._skip_summary:
      return tf.constant("")

    with self._strip_tag_scope():
      summary = self._actual_summary_histogram_fn(
          name=self._prefix_scope(name),
          values=values,
          family=family,
          collections=[])
    self._summary_ops.append(summary)
    return summary

  def audio(self, name, tensor, sample_rate, max_outputs=3, family=None):
    """See `Summary`."""

    if self._skip_summary:
      return tf.constant("")

    with self._strip_tag_scope():
      summary = self._actual_summary_audio_fn(
          name=self._prefix_scope(name),
          tensor=tensor,
          sample_rate=sample_rate,
          max_outputs=max_outputs,
          family=family,
          collections=[])
    self._summary_ops.append(summary)
    return summary

  def merge_all(self):
    """Returns the list of this graph's scoped summary ops.

    Note: this is an abuse of the tf.summary.merge_all API since it is expected
    to return a summary op with all summaries merged. However, ScopedSummary is
    only used in the internal implementation, so this should be OK.
    """

    current_graph = tf_compat.v1.get_default_graph()
    return [op for op in self._summary_ops if op.graph == current_graph]


# TODO: _ScopedSummary and _ScopedSummaryV2 share a lot of the same
# methods. Extract a base class for the two, or move shared methods into
# Summary.
class _ScopedSummaryV2(Summary):
  """Records summaries in a given scope.

  Only for TPUEstimator.

  Each scope gets assigned a different collection where summary ops gets added.

  This allows Tensorboard to display summaries with different scopes but the
  same name in the same charts.
  """

  def __init__(self, logdir, namespace=None, scope=None, skip_summary=False):
    """Initializes a `_TPUScopedSummary`.

    Args:
      logdir: String directory path for logging summaries.
      namespace: String namespace to append to the logdir. Can be shared with
        other `_ScopedSummary` objects.
      scope: String scope name.
      skip_summary: Whether to record summary ops.

    Returns:
      A `_ScopedSummary` instance.
    """

    # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top
    from tensorboard.plugins.audio import summary_v2 as audio_v2_lib
    from tensorboard.plugins.histogram import summary_v2 as histogram_v2_lib
    from tensorboard.plugins.image import summary_v2 as image_v2_lib
    from tensorboard.plugins.scalar import summary_v2 as scalar_v2_lib
    # pylint: enable=g-direct-tensorflow-import,g-import-not-at-top

    assert logdir

    if scope == _DEFAULT_SCOPE:
      raise ValueError("scope cannot be 'default'.")

    if namespace:
      logdir = os.path.join(logdir, namespace)
    if scope:
      logdir = os.path.join(logdir, scope)
    self._logdir = logdir
    self._namespace = namespace
    self._scope = scope
    self._additional_scope = None
    self._skip_summary = skip_summary
    self._actual_summary_scalar_fn = scalar_v2_lib.scalar
    self._actual_summary_image_fn = image_v2_lib.image
    self._actual_summary_histogram_fn = histogram_v2_lib.histogram
    self._actual_summary_audio_fn = audio_v2_lib.audio
    self._summary_tuples = []

  @property
  def namespace(self):
    """Returns namespace string."""

    return self._namespace

  @property
  def scope(self):
    """Returns scope string."""

    return self._scope

  @property
  def logdir(self):
    """Returns the logdir."""

    return self._logdir

  @property
  def writer(self):
    """Returns the file writer."""

    return self._writer

  @contextlib.contextmanager
  def current_scope(self):
    """Registers the current context's scope to strip it from summary tags."""

    self._additional_scope = tf_compat.v1.get_default_graph().get_name_scope()
    try:
      yield
    finally:
      self._additional_scope = None

  @contextlib.contextmanager
  def _strip_tag_scope(self, additional_scope):
    """Monkey patches `summary_op_util.summary_scope` to strip tag scopes."""

    # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top
    from tensorflow.python.ops import summary_ops_v2 as summary_v2_lib
    from tensorflow.python.ops.summary_ops_v2 import _INVALID_SCOPE_CHARACTERS
    # pylint: enable=g-direct-tensorflow-import,g-import-not-at-top

    original_summary_scope = summary_op_util.summary_scope
    original_summary_scope_v2 = getattr(summary_v2_lib, "summary_scope")

    # TF 1.
    @contextlib.contextmanager
    def strip_tag_scope_fn(name, family=None, default_name=None, values=None):
      tag, scope = (None, None)
      with original_summary_scope(name, family, default_name, values) as (t, s):
        tag = _strip_scope(t, self.scope, additional_scope)
        scope = s
      yield tag, scope

    # TF 2.
    @contextlib.contextmanager
    def monkey_patched_summary_scope_fn(name,
                                        default_name="summary",
                                        values=None):
      """Rescopes the summary tag with the ScopedSummary's scope."""

      name = name or default_name
      current_scope = tf_compat.v1.get_default_graph().get_name_scope()
      tag = current_scope + "/" + name if current_scope else name
      # Strip illegal characters from the scope name, and if that leaves
      # nothing, use None instead so we pick up the default name.
      name = _INVALID_SCOPE_CHARACTERS.sub("", name) or None
      with tf.compat.v1.name_scope(name, default_name, values) as scope:
        tag = _strip_scope(tag, self.scope, additional_scope)
        yield tag, scope

    setattr(summary_op_util, "summary_scope", strip_tag_scope_fn)
    setattr(summary_v2_lib, "summary_scope", monkey_patched_summary_scope_fn)
    setattr(compat.tf2.summary.experimental, "summary_scope",
            monkey_patched_summary_scope_fn)
    setattr(compat.tf2.summary, "summary_scope",
            monkey_patched_summary_scope_fn)
    try:
      yield
    finally:
      setattr(summary_op_util, "summary_scope", original_summary_scope)
      setattr(summary_v2_lib, "summary_scope", original_summary_scope_v2)
      setattr(compat.tf2.summary.experimental, "summary_scope",
              original_summary_scope_v2)
      setattr(compat.tf2.summary, "summary_scope", original_summary_scope_v2)

  def _prefix_scope(self, name):
    scope = self._scope
    if name[0] == "/":
      name = name[1:]
    if not scope:
      scope = _DEFAULT_SCOPE
    return "{scope}/{name}".format(scope=scope, name=name)

  def _create_summary(self, summary_fn, name, tensor):
    """Creates a summary op.

    This will create a function that takes a `Tensor` and adds it to a list with
    its matching `tensor`.

    Args:
      summary_fn: A function that takes a name string and `Tensor` and returns a
        summary op.
      name: String name of the summary.
      tensor: `Tensor` to pass to the summary.
    """
    if self._skip_summary:
      return

    # additional_scope is set with the context from `current_scope`.
    # e.g. "foo/bar".
    additional_scope = self._additional_scope
    # name_scope is from whichever scope the summary actually gets called in.
    # e.g. "foo/bar/baz"
    name_scope = tf_compat.v1.get_default_graph().get_name_scope()
    # Reuse name_scope if it exists by appending "/" to it.
    name_scope = name_scope + "/" if name_scope else name_scope

    def _summary_fn(tensor, step):
      """Creates a summary with the given `Tensor`."""

      summary_name = self._prefix_scope(name)
      # Recover the current name scope when this fn is be called, because the
      # scope may be different when fns are called.
      # e.g. "foo/bar/baz/scalar" will become "baz/scalar" when
      # additional_scope is "foo/bar".
      # TODO: Figure out a cleaner way to handle this.
      assert not tf_compat.v1.get_default_graph().get_name_scope()
      with tf_compat.v1.name_scope(name_scope):
        with self._strip_tag_scope(additional_scope):
          # TODO: Do summaries need to be reduced before writing?
          # Presumably each tensor core creates its own summary so we may be
          # writing out num_tensor_cores copies of the same value.
          return summary_fn(summary_name, tensor, step)

    self._summary_tuples.append((_summary_fn, tensor))

  def scalar(self, name, tensor, family=None, description=None):

    def _summary_fn(name, tensor, step):
      return self._actual_summary_scalar_fn(
          name=name, data=tensor, description=description, step=step)

    self._create_summary(_summary_fn, name,
                         tf.reshape(tf.convert_to_tensor(value=tensor), []))

  def image(self, name, tensor, max_outputs=3, family=None, description=None):

    def _summary_fn(name, tensor, step):
      return self._actual_summary_image_fn(
          name=name,
          data=tensor,
          max_outputs=max_outputs,
          description=description,
          step=step)

    self._create_summary(_summary_fn, name, tf.cast(tensor, tf.float32))

  def histogram(self,
                name,
                values,
                family=None,
                buckets=None,
                description=None):

    def _summary_fn(name, tensor, step):
      return self._actual_summary_histogram_fn(
          name=name,
          data=tensor,
          buckets=buckets,
          description=description,
          step=step)

    self._create_summary(_summary_fn, name, tf.convert_to_tensor(value=values))

  def audio(self,
            name,
            tensor,
            sample_rate,
            max_outputs=3,
            family=None,
            encoding=None,
            description=None):

    def _summary_fn(name, tensor, step):
      return self._actual_summary_audio_fn(
          name=name,
          data=tensor,
          sample_rate=sample_rate,
          encoding=encoding,
          description=description,
          step=step)

    self._create_summary(_summary_fn, name, tf.cast(tensor, tf.float32))

  def summary_tuples(self):
    """Returns an iterable of functions that convert a Tensor to a summary.

    Used for TPU host calls.

    Returns:
      Iterable of functions that take a single `Tensor` argument.
    """
    return tuple(self._summary_tuples)

  def clear_summary_tuples(self):
    """Clears the list of current summary tuples."""

    self._summary_tuples = []


class _TPUScopedSummary(_ScopedSummaryV2):
  """Records summaries in a given scope.

  Only for TPUEstimator.

  Each scope gets assigned a different collection where summary ops gets added.

  This allows Tensorboard to display summaries with different scopes but the
  same name in the same charts.
  """

  def __init__(self, logdir, namespace=None, scope=None, skip_summary=False):
    super(_TPUScopedSummary, self).__init__(logdir, namespace, scope,
                                            skip_summary)
    from tensorflow.python.ops import summary_ops_v2 as summary_v2_lib  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top

    self._actual_summary_scalar_fn = summary_v2_lib.scalar
    self._actual_summary_image_fn = summary_v2_lib.image
    self._actual_summary_histogram_fn = summary_v2_lib.histogram
    self._actual_summary_audio_fn = summary_v2_lib.audio

  def scalar(self, name, tensor, family=None):

    def _summary_fn(name, tensor, step):
      return self._actual_summary_scalar_fn(
          name=name, tensor=tensor, family=family, step=step)

    self._create_summary(_summary_fn, name,
                         tf.reshape(tf.convert_to_tensor(value=tensor), [1]))

  def image(self, name, tensor, max_outputs=3, family=None):

    def _summary_fn(name, tensor, step):
      return self._actual_summary_image_fn(
          name=name,
          tensor=tensor,
          max_images=max_outputs,
          family=family,
          step=step)

    self._create_summary(_summary_fn, name, tf.cast(tensor, tf.float32))

  def histogram(self, name, values, family=None):

    def _summary_fn(name, tensor, step):
      return self._actual_summary_histogram_fn(
          name=name, tensor=tensor, family=family, step=step)

    self._create_summary(_summary_fn, name, tf.convert_to_tensor(value=values))

  def audio(self, name, tensor, sample_rate, max_outputs=3, family=None):

    def _summary_fn(name, tensor, step):
      return self._actual_summary_audio_fn(
          name=name,
          tensor=tensor,
          sample_rate=sample_rate,
          max_outputs=max_outputs,
          family=family,
          step=step)

    self._create_summary(_summary_fn, name, tf.cast(tensor, tf.float32))


class _SummaryWrapper(object):
  """Wraps an `adanet.Summary` to provide summary-like APIs."""

  def __init__(self, summary):
    self._summary = summary

  def scalar(self, name, tensor, collections=None, family=None):
    """See `tf.summary.scalar`."""

    if collections is not None:
      logging.warning(
          "The `collections` argument will be "
          "ignored for scalar summary: %s, %s", name, tensor)
    return self._summary.scalar(name=name, tensor=tensor, family=family)

  def image(self, name, tensor, max_outputs=3, collections=None, family=None):
    """See `tf.summary.image`."""

    if collections is not None:
      logging.warning(
          "The `collections` argument will be "
          "ignored for image summary: %s, %s", name, tensor)
    return self._summary.image(
        name=name, tensor=tensor, max_outputs=max_outputs, family=family)

  def histogram(self, name, values, collections=None, family=None):
    """See `tf.summary.histogram`."""

    if collections is not None:
      logging.warning(
          "The `collections` argument will be "
          "ignored for histogram summary: %s, %s", name, values)
    return self._summary.histogram(name=name, values=values, family=family)

  def audio(self,
            name,
            tensor,
            sample_rate,
            max_outputs=3,
            collections=None,
            family=None):
    """See `tf.summary.audio`."""

    if collections is not None:
      logging.warning(
          "The `collections` argument will be "
          "ignored for audio summary: %s, %s", name, tensor)
    return self._summary.audio(
        name=name,
        tensor=tensor,
        sample_rate=sample_rate,
        max_outputs=max_outputs,
        family=family)

  def scalar_v2(self, name, tensor, family=None, step=None):
    """See `tf.contrib.summary.scalar`."""

    if step is not None:
      logging.warning(
          "The `step` argument will be ignored to use the global step for "
          "scalar summary: %s, %s", name, tensor)
    return self._summary.scalar(name=name, tensor=tensor, family=family)

  def image_v2(self,
               name,
               tensor,
               bad_color=None,
               max_images=3,
               family=None,
               step=None):
    """See `tf.contrib.summary.image`."""

    if step is not None:
      logging.warning(
          "The `step` argument will be ignored to use the global step for "
          "image summary: %s, %s", name, tensor)
    # TODO: Add support for `bad_color` arg.
    if bad_color is not None:
      logging.warning(
          "The `bad_color` arg is not supported for image summary: %s, %s",
          name, tensor)
    return self._summary.image(
        name=name, tensor=tensor, max_outputs=max_images, family=family)

  def histogram_v2(self, name, tensor, family=None, step=None):
    """See `tf.contrib.summary.histogram`."""

    if step is not None:
      logging.warning(
          "The `step` argument will be ignored to use the global step for "
          "histogram summary: %s, %s", name, tensor)
    return self._summary.histogram(name=name, values=tensor, family=family)

  def audio_v2(self,
               name,
               tensor,
               sample_rate,
               max_outputs,
               family=None,
               step=None):
    """See `tf.contrib.summary.audio`."""

    if step is not None:
      logging.warning(
          "The `step` argument will be ignored to use the global step for "
          "audio summary: %s, %s", name, tensor)
    return self._summary.audio(
        name=name,
        tensor=tensor,
        sample_rate=sample_rate,
        max_outputs=max_outputs,
        family=family)

  def scalar_v3(self, name, data, step=None, description=None):
    """See `tf.compat.v2.summary.scalar`."""

    if step is not None:
      logging.warning(
          "The `step` argument will be ignored to use the iteration step for "
          "scalar summary: %s", name)
    return self._summary.scalar(name=name, tensor=data, description=description)

  def image_v3(self, name, data, step=None, max_outputs=3, description=None):
    """See `tf.compat.v2.summary.image`."""

    if step is not None:
      logging.warning(
          "The `step` argument will be ignored to use the iteration step for "
          "image summary: %s", name)
    return self._summary.image(
        name=name,
        tensor=data,
        max_outputs=max_outputs,
        description=description)

  def histogram_v3(self, name, data, step=None, buckets=None, description=None):
    """See `tf.compat.v2.summary.histogram`."""

    if step is not None:
      logging.warning(
          "The `step` argument will be ignored to use the global step for "
          "histogram summary: %s", name)
    return self._summary.histogram(
        name=name, tensor=data, buckets=buckets, description=description)

  def audio_v3(self,
               name,
               data,
               sample_rate,
               step=None,
               max_outputs=3,
               encoding=None,
               description=None):
    """See `tf.compat.v2.summary.audio`."""

    if step is not None:
      logging.warning(
          "The `step` argument will be ignored to use the global step for "
          "audio summary: %s", name)
    return self._summary.audio(
        name=name,
        tensor=data,
        sample_rate=sample_rate,
        max_outputs=max_outputs,
        encoding=encoding,
        description=description)


@contextlib.contextmanager
def monkey_patched_summaries(summary):
  """A context where global summary functions point to the given summary.

  Restores original summary functions upon exit.

  NOTE: This function is not thread-safe.

  Args:
    summary: An `adanet.Summary` instance.

  Yields:
    A context where summary functions are routed to the given `adanet.Summary`.
  """

  from tensorflow.python.ops import summary_ops_v2 as summary_v2_lib  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top

  old_summary_scalar = summary_lib.scalar
  old_summary_image = summary_lib.image
  old_summary_histogram = summary_lib.histogram
  old_summary_audio = summary_lib.audio
  old_summary_v2_scalar = summary_v2_lib.scalar
  old_summary_v2_image = summary_v2_lib.image
  old_summary_v2_histogram = summary_v2_lib.histogram
  old_summary_v2_audio = summary_v2_lib.audio
  old_summary_compat_v2_scalar = tf_compat.v2.summary.scalar
  old_summary_compat_v2_image = tf_compat.v2.summary.image
  old_summary_compat_v2_histogram = tf_compat.v2.summary.histogram
  old_summary_compat_v2_audio = tf_compat.v2.summary.audio

  # Monkey-patch global attributes.
  wrapped_summary = _SummaryWrapper(summary)
  setattr(tf_v1.summary, "scalar", wrapped_summary.scalar)
  setattr(tf_v1.summary, "image", wrapped_summary.image)
  setattr(tf_v1.summary, "histogram", wrapped_summary.histogram)
  setattr(tf_v1.summary, "audio", wrapped_summary.audio)
  setattr(tf_compat.v1.summary, "scalar", wrapped_summary.scalar)
  setattr(tf_compat.v1.summary, "image", wrapped_summary.image)
  setattr(tf_compat.v1.summary, "histogram", wrapped_summary.histogram)
  setattr(tf_compat.v1.summary, "audio", wrapped_summary.audio)
  setattr(summary_lib, "scalar", wrapped_summary.scalar)
  setattr(summary_lib, "image", wrapped_summary.image)
  setattr(summary_lib, "histogram", wrapped_summary.histogram)
  setattr(summary_lib, "audio", wrapped_summary.audio)
  setattr(tf_compat.v2.summary, "scalar", wrapped_summary.scalar_v3)
  setattr(tf_compat.v2.summary, "image", wrapped_summary.image_v3)
  setattr(tf_compat.v2.summary, "histogram", wrapped_summary.histogram_v3)
  setattr(tf_compat.v2.summary, "audio", wrapped_summary.audio_v3)
  setattr(summary_v2_lib, "scalar", wrapped_summary.scalar_v2)
  setattr(summary_v2_lib, "image", wrapped_summary.image_v2)
  setattr(summary_v2_lib, "histogram", wrapped_summary.histogram_v2)
  setattr(summary_v2_lib, "audio", wrapped_summary.audio_v2)
  try:
    # TF 2.0 eliminates tf.contrib.
    setattr(tf_v1.contrib.summary, "scalar", wrapped_summary.scalar_v2)
    setattr(tf_v1.contrib.summary, "image", wrapped_summary.image_v2)
    setattr(tf_v1.contrib.summary, "histogram", wrapped_summary.histogram_v2)
    setattr(tf_v1.contrib.summary, "audio", wrapped_summary.audio_v2)
  except (AttributeError, ImportError):
    # TF 2.0 eliminates tf.contrib.
    # Also set the new tf.summary to be use the new summaries in TF 2.
    if tf_compat.version_greater_or_equal("2.0.0"):
      setattr(tf.summary, "scalar", wrapped_summary.scalar_v3)
      setattr(tf.summary, "image", wrapped_summary.image_v3)
      setattr(tf.summary, "histogram", wrapped_summary.histogram_v3)
      setattr(tf.summary, "audio", wrapped_summary.audio_v3)

  try:
    yield
  finally:
    # Revert monkey-patches.
    try:
      setattr(tf_v1.contrib.summary, "audio", old_summary_v2_audio)
      setattr(tf_v1.contrib.summary, "histogram", old_summary_v2_histogram)
      setattr(tf_v1.contrib.summary, "image", old_summary_v2_image)
      setattr(tf_v1.contrib.summary, "scalar", old_summary_v2_scalar)
    except (AttributeError, ImportError):
      # TF 2.0 eliminates tf.contrib.
      pass
    setattr(summary_v2_lib, "audio", old_summary_v2_audio)
    setattr(summary_v2_lib, "histogram", old_summary_v2_histogram)
    setattr(summary_v2_lib, "image", old_summary_v2_image)
    setattr(summary_v2_lib, "scalar", old_summary_v2_scalar)
    setattr(tf.summary, "audio", old_summary_compat_v2_audio)
    setattr(tf.summary, "histogram", old_summary_compat_v2_histogram)
    setattr(tf.summary, "image", old_summary_compat_v2_image)
    setattr(tf.summary, "scalar", old_summary_compat_v2_scalar)
    setattr(tf_compat.v2.summary, "audio", old_summary_compat_v2_audio)
    setattr(tf_compat.v2.summary, "histogram", old_summary_compat_v2_histogram)
    setattr(tf_compat.v2.summary, "image", old_summary_compat_v2_image)
    setattr(tf_compat.v2.summary, "scalar", old_summary_compat_v2_scalar)
    setattr(summary_lib, "audio", old_summary_audio)
    setattr(summary_lib, "histogram", old_summary_histogram)
    setattr(summary_lib, "image", old_summary_image)
    setattr(summary_lib, "scalar", old_summary_scalar)
    setattr(tf_compat.v1.summary, "audio", old_summary_audio)
    setattr(tf_compat.v1.summary, "histogram", old_summary_histogram)
    setattr(tf_compat.v1.summary, "image", old_summary_image)
    setattr(tf_compat.v1.summary, "scalar", old_summary_scalar)
    setattr(tf_v1.summary, "audio", old_summary_audio)
    setattr(tf_v1.summary, "histogram", old_summary_histogram)
    setattr(tf_v1.summary, "image", old_summary_image)
    setattr(tf_v1.summary, "scalar", old_summary_scalar)
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  Source code for adanet.core.tpu_estimator

"""An AdaNet estimator implementation which can run on TPU.

Copyright 2018 The AdaNet Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import contextlib
import functools

from absl import logging
from adanet import tf_compat
from adanet.core.estimator import Estimator
import tensorflow.compat.v2 as tf


# pylint: disable=g-classes-have-attributes
[docs]class TPUEstimator(Estimator, tf.compat.v1.estimator.tpu.TPUEstimator):
  """An :class:`adanet.Estimator` capable of training and evaluating on TPU.

  Unless :code:`use_tpu=False`, training will run on TPU. However, certain parts
  of the AdaNet training loop, such as report materialization and best candidate
  selection, will still occurr on CPU. Furthermore, if using TPUEmbedding (i.e.
  :code:`embedding_config_spec` is supplied), inference will also occurr on CPU.

  TODO: Provide the missing functionality detailed below.
  N.B: Embeddings using the TPUEmbedding (i.e. :code:`embedding_config_spec`
  is provided) only support :code:`shared_embedding_columns` when running for
  multiple AdaNet iterations. Using regular :code:`embedding_columns` will cause
  iterations 2..n to fail because of mismatched embedding scopes.

  Args:
    head: See :class:`adanet.Estimator`.
    subnetwork_generator: See :class:`adanet.Estimator`.
    max_iteration_steps: See :class:`adanet.Estimator`.
    ensemblers: See :class:`adanet.Estimator`.
    ensemble_strategies: See :class:`adanet.Estimator`.
    evaluator: See :class:`adanet.Estimator`.
    report_materializer: See :class:`adanet.Estimator`.
    metric_fn: See :class:`adanet.Estimator`.
    force_grow: See :class:`adanet.Estimator`.
    replicate_ensemble_in_training: See :class:`adanet.Estimator`.
    adanet_loss_decay: See :class:`adanet.Estimator`.
    report_dir: See :class:`adanet.Estimator`.
    config: See :class:`adanet.Estimator`.
    use_tpu: Boolean to enable training on TPU. Defaults to :code:`True` and is
      only provided to allow debugging models on CPU/GPU. Use
      :class:`adanet.Estimator` instead if you do not plan to run on TPU.
    eval_on_tpu: Boolean to enable evaluating on TPU. Defaults to :code:`True`.
      Ignored if :code:`use_tpu=False`.
    export_to_tpu: See :class:`tf.compat.v1.estimator.tpu.TPUEstimator`.
    train_batch_size: See :class:`tf.compat.v1.estimator.tpu.TPUEstimator`.
      Defaults to 0 if `None`.
    eval_batch_size: See :class:`tf.compat.v1.estimator.tpu.TPUEstimator`.
      Defaults to train_batch_size if `None`.
    predict_batch_size: See :class:`tf.compat.v1.estimator.tpu.TPUEstimator`.
      Defaults to eval_batch_size if `None`.
    embedding_config_spec: See :class:`tf.compat.v1.estimator.tpu.TPUEstimator`.
      If supplied, :code:`predict` will be called on CPU and no TPU compatible
        :code:`SavedModel` will be exported.
    debug: See :class:`adanet.Estimator`.
    enable_ensemble_summaries: See :class:`adanet.Estimator`.
    enable_subnetwork_summaries: See :class:`adanet.Estimator`.
    export_subnetwork_logits: Whether to include subnetwork logits in exports.
    export_subnetwork_last_layer: Whether to include subnetwork last layer in
      exports.
    global_step_combiner_fn: See :class:`adanet.Estimator`.
    max_iterations: See :class:`adanet.Estimator`.
    replay_config: See :class:`adanet.Estimator`.
    add_predict_batch_config: If True, supplies a default
      `tpu_estimator.BatchConfig` when calling
      `tpu_estimator.model_fn_inference_on_tpu`, otherwise supplies None.
    **kwargs: Extra keyword args passed to the parent.
  """

  def __init__(self,
               head,
               subnetwork_generator,
               max_iteration_steps,
               ensemblers=None,
               ensemble_strategies=None,
               evaluator=None,
               report_materializer=None,
               metric_fn=None,
               force_grow=False,
               replicate_ensemble_in_training=False,
               adanet_loss_decay=.9,
               model_dir=None,
               report_dir=None,
               config=None,
               use_tpu=True,
               eval_on_tpu=True,
               export_to_tpu=True,
               train_batch_size=None,
               eval_batch_size=None,
               predict_batch_size=None,
               embedding_config_spec=None,
               debug=False,
               enable_ensemble_summaries=True,
               enable_subnetwork_summaries=True,
               export_subnetwork_logits=False,
               export_subnetwork_last_layer=True,
               global_step_combiner_fn=tf.math.reduce_mean,
               max_iterations=None,
               replay_config=None,
               add_predict_batch_config=True,
               **kwargs):
    self._use_tpu = use_tpu
    if not self._use_tpu:
      logging.warning(
          "This adanet.TPUEstimator is meant to be used for running on TPU. "
          "If you want to run on CPU/GPU, use adanet.Estimator instead.")
    # TPUEstimator modifies config under the hood. We keep track of it here so
    # we can use it from _create_temp_run_config.
    self._original_config = config or tf_compat.v1.estimator.tpu.RunConfig()
    self._eval_on_tpu = eval_on_tpu if self._use_tpu else False
    self._export_to_tpu = export_to_tpu
    self._train_batch_size = train_batch_size or 0
    self._eval_batch_size = eval_batch_size or train_batch_size or 0
    self._predict_batch_size = (
        predict_batch_size or eval_batch_size or train_batch_size or 0)
    self._embedding_config_spec = embedding_config_spec
    self._add_predict_batch_config = add_predict_batch_config
    if self._embedding_config_spec:
      logging.warning(
          "TPU does not support inference with TPUEmbedding. Force setting "
          "`export_to_tpu=False` so no TPU SavedModel will be exported.")
      self._export_to_tpu = False

    from tensorflow_estimator.python.estimator.tpu import tpu_estimator  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top
    super(TPUEstimator, self).__init__(
        head=head,
        subnetwork_generator=subnetwork_generator,
        max_iteration_steps=max_iteration_steps,
        ensemblers=ensemblers,
        ensemble_strategies=ensemble_strategies,
        evaluator=evaluator,
        report_materializer=report_materializer,
        metric_fn=metric_fn,
        force_grow=force_grow,
        replicate_ensemble_in_training=replicate_ensemble_in_training,
        adanet_loss_decay=adanet_loss_decay,
        model_dir=model_dir,
        report_dir=report_dir,
        config=self._original_config,
        use_tpu=self._use_tpu,
        eval_on_tpu=self._eval_on_tpu,
        export_to_tpu=self._export_to_tpu,
        export_saved_model_api_version=(
            tpu_estimator.ExportSavedModelApiVersion.V2),
        train_batch_size=self._train_batch_size,
        eval_batch_size=self._eval_batch_size,
        predict_batch_size=self._predict_batch_size,
        embedding_config_spec=self._embedding_config_spec,
        debug=debug,
        enable_ensemble_summaries=enable_ensemble_summaries,
        enable_subnetwork_summaries=enable_subnetwork_summaries,
        export_subnetwork_logits=export_subnetwork_logits,
        export_subnetwork_last_layer=export_subnetwork_last_layer,
        global_step_combiner_fn=global_step_combiner_fn,
        max_iterations=max_iterations,
        replay_config=replay_config,
        **kwargs)

[docs]  def predict(self,
              input_fn,
              predict_keys=None,
              hooks=None,
              checkpoint_path=None,
              yield_single_examples=True):

    use_tpu = self._use_tpu
    eval_on_tpu = self._eval_on_tpu
    if self._embedding_config_spec:
      logging.warning("TPU does not support inference with TPUEmbedding. "
                      "Falling back to CPU.")
      use_tpu = False
      eval_on_tpu = False
    if not checkpoint_path:
      checkpoint_path = tf.train.latest_checkpoint(self.model_dir)
    logging.info("Computing predictions for AdaNet model at checkpoint: %s",
                 checkpoint_path)
    params = self.params
    params.update({
        "best_ensemble_index":
            self._compute_best_ensemble_index(checkpoint_path, hooks),
        "checkpoint_path":
            checkpoint_path,
    })
    from tensorflow_estimator.python.estimator.tpu import tpu_estimator  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top
    # TODO: Consider extracting a common function to use here and in
    # _create_temp_estimator().
    estimator = tf_compat.v1.estimator.tpu.TPUEstimator(
        model_fn=self._create_model_fn(hooks=hooks, is_export=False),
        params=params,
        config=self._original_config,
        model_dir=self.model_dir,
        use_tpu=use_tpu,
        eval_on_tpu=eval_on_tpu,
        export_to_tpu=self._export_to_tpu,
        export_saved_model_api_version=(
            tpu_estimator.ExportSavedModelApiVersion.V2),
        train_batch_size=self._train_batch_size,
        eval_batch_size=self._eval_batch_size,
        predict_batch_size=self._predict_batch_size,
        embedding_config_spec=self._embedding_config_spec)
    return estimator.predict(
        input_fn,
        predict_keys=predict_keys,
        hooks=hooks,
        checkpoint_path=checkpoint_path,
        yield_single_examples=yield_single_examples)


  def _create_temp_run_config(self, temp_model_dir):
    """See the `Estimator` base class for details."""

    return tf_compat.v1.estimator.tpu.RunConfig(
        model_dir=temp_model_dir,
        tpu_config=self._original_config.tpu_config,
        evaluation_master=self._original_config.evaluation_master,
        master=self._original_config.master,
        cluster=self._original_config.cluster,
        tf_random_seed=self._original_config.tf_random_seed,
        session_config=self._original_config.session_config,
        protocol=self._original_config.protocol)

  def _create_temp_estimator(self, config, **create_model_fn_args):
    """See the `Estimator` base class for details."""

    from tensorflow_estimator.python.estimator.tpu import tpu_estimator  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top

    temp_model_dir = config.model_dir
    return tf_compat.v1.estimator.tpu.TPUEstimator(
        model_fn=self._create_model_fn(**create_model_fn_args),
        config=config,
        model_dir=temp_model_dir,
        use_tpu=self._use_tpu,
        eval_on_tpu=self._eval_on_tpu,
        export_to_tpu=self._export_to_tpu,
        export_saved_model_api_version=(
            tpu_estimator.ExportSavedModelApiVersion.V2),
        train_batch_size=self._train_batch_size,
        eval_batch_size=self._eval_batch_size,
        predict_batch_size=self._predict_batch_size,
        embedding_config_spec=self._embedding_config_spec)

  @contextlib.contextmanager
  def _call_input_fn_in_new_graph(self, input_fn, mode, config):
    """See the `Estimator` base class for details."""

    # Bind parameters to input_fn since the parent's input_fn is not expected to
    # have any arguments.
    from tensorflow.python.util import function_utils  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top
    input_fn_args = function_utils.fn_args(input_fn)
    kwargs = {}
    if "mode" in input_fn_args:
      kwargs["mode"] = mode
    if "params" in input_fn_args:
      kwargs["params"] = self.params
    if "config" in input_fn_args:
      kwargs["config"] = config
    input_fn = functools.partial(input_fn, **kwargs)
    with super(TPUEstimator,
               self)._call_input_fn_in_new_graph(input_fn, mode, config) as res:
      yield res

  def _create_estimator_spec(self, current_iteration, mode,
                             iteration_number_tensor, previous_iteration_vars,
                             is_growing_phase, evaluation_name):
    """See the `Estimator` base class for details."""

    if not self._use_tpu:
      return super(TPUEstimator, self)._create_estimator_spec(
          current_iteration, mode, iteration_number_tensor,
          previous_iteration_vars, is_growing_phase, evaluation_name)

    training = mode == tf.estimator.ModeKeys.TRAIN
    iteration_estimator_spec = current_iteration.estimator_spec
    training_hooks = self._training_hooks(current_iteration, training,
                                          iteration_number_tensor,
                                          previous_iteration_vars,
                                          is_growing_phase)
    if is_growing_phase:
      training_hooks = self._process_hooks_for_growing_phase(training_hooks)
    evaluation_hooks = self._evaluation_hooks(current_iteration, training,
                                              evaluation_name)
    return tf_compat.v1.estimator.tpu.TPUEstimatorSpec(
        mode=mode,
        predictions=iteration_estimator_spec.predictions,
        loss=iteration_estimator_spec.loss,
        train_op=self._train_op(iteration_estimator_spec, is_growing_phase),
        host_call=self._create_host_call(current_iteration, training),
        eval_metrics=iteration_estimator_spec.eval_metrics,
        export_outputs=iteration_estimator_spec.export_outputs,
        # Return a constant summary_op, otherwise `Estimator` creates summary
        # ops that do not work on TPU.
        scaffold_fn=lambda: tf.compat.v1.train.Scaffold(  # pylint: disable=g-long-lambda
            summary_op=tf.constant("")),
        training_hooks=training_hooks,
        evaluation_hooks=evaluation_hooks)

  def _training_hooks(self, current_iteration, training,
                      iteration_number_tensor, previous_iteration_vars,
                      is_growing_phase):
    """See the `Estimator` base class for details."""

    training_hooks = super(TPUEstimator,
                           self)._training_hooks(current_iteration, training,
                                                 iteration_number_tensor,
                                                 previous_iteration_vars,
                                                 is_growing_phase)
    if self._use_tpu:
      # Remove summary hooks on TPU since summaries are saved via host_call.
      training_hooks = [
          hook for hook in training_hooks
          if not isinstance(hook, tf.compat.v1.train.SummarySaverHook)
      ]

    return training_hooks

  def _create_host_call(self, current_iteration, training):
    """Construct a host_call writing scalar summaries.

    Args:
      current_iteration: The current `_Iteration`.
      training: Boolean indicating whether in training mode.

    Returns:
      (fn, args) Pair to be called by TPUEstimator as the host_call.
    """

    if not training:
      return lambda **kwargs: [tf.no_op()], {}

    # Collect and flatten summary functions and arguments.
    summary_kwargs = collections.OrderedDict()
    gs_t = tf.reshape(tf.cast(tf.train.get_global_step(), dtype=tf.int32), [1])
    summary_kwargs["global_step"] = gs_t

    summary_fns = collections.defaultdict(list)
    for i, summary in enumerate(current_iteration.summaries):
      for j, (summary_fn, tensor) in enumerate(summary.summary_tuples()):
        summary_fns[i].append(summary_fn)
        summary_kwargs["summary_{}_{}".format(i, j)] = tensor

    def _host_call_fn(**kwargs):
      """Training host call.

      Creates summaries for training metrics.

      Args:
        **kwargs: Dict of {str: Tensor} , with `Tensor` of shape `[batch]`. Must
          contain key "global_step" with value of current global_step Tensor.

      Returns:
        List of summary ops to run on the CPU host.
      """

      from tensorflow.python.ops import summary_ops_v2  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top

      gs = tf.cast(kwargs.pop("global_step")[0], dtype=tf.int64)
      for i, summary in enumerate(current_iteration.summaries):
        with summary_ops_v2.create_file_writer(summary.logdir).as_default():
          with summary_ops_v2.record_summaries_every_n_global_steps(
              n=self.config.save_summary_steps, global_step=gs):
            for j, summary_fn in enumerate(summary_fns[i]):
              tensor = kwargs["summary_{}_{}".format(i, j)]
              summary_fn(tensor, step=gs)
        summary.clear_summary_tuples()
      return tf.compat.v1.summary.all_v2_summary_ops()

    return _host_call_fn, summary_kwargs

  def _create_model_fn(self,
                       is_growing_phase=False,
                       is_inside_training_loop=False,
                       is_export=False,
                       evaluation_name=None,
                       best_ensemble_index=None,
                       checkpoint_path=None,
                       hooks=None):
    """See the `Estimator` base class for details."""

    from tensorflow_estimator.python.estimator.tpu import tpu_estimator  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top

    adanet_model_fn = super(TPUEstimator, self)._create_model_fn(
        is_growing_phase, is_inside_training_loop, is_export, evaluation_name,
        best_ensemble_index, checkpoint_path, hooks)

    def _model_fn(features, labels, mode, params, config):
      """The model_fn to return which supports exporting on TPU."""

      if (is_export and params["use_tpu"] and
          mode == tf.estimator.ModeKeys.PREDICT):
        batch_config = None
        if self._add_predict_batch_config:
          batch_config = tpu_estimator.BatchConfig(
              # Set num_batch_threads to the number of TPU cores on Servomatic.
              num_batch_threads=2,
              max_batch_size=self._predict_batch_size,
              # TODO: Magic number. Investigate whether there is a
              # better way to set this, or have the user pass it in.
              batch_timeout_micros=60 * 1000,
              allowed_batch_sizes=[self._predict_batch_size])
        return tpu_estimator.model_fn_inference_on_tpu(
            adanet_model_fn,
            features=features,
            labels=labels,
            config=config,
            params=params,
            batch_config=batch_config)

      return adanet_model_fn(features, labels, mode, params, config)

    return _model_fn





          

      

      

    

  

  
    
    adanet.distributed.placement
    

    

    
 
  

    
      
          
            
  Source code for adanet.distributed.placement

# Copyright 2019 The AdaNet Authors. All Rights Reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Distributed placement strategies."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import abc
import contextlib

from absl import logging
from adanet import tf_compat
from adanet.distributed.devices import _OpNameHashStrategy
import numpy as np
import six


[docs]@six.add_metaclass(abc.ABCMeta)
class PlacementStrategy(object):  # pytype: disable=ignored-metaclass
  """Abstract placement strategy for distributed training.

  Given a cluster of workers, the placement strategy determines which subgraph
  each worker constructs.
  """

  @property
  def config(self):
    """Returns this strategy's configuration.

    Returns:
      The :class:`tf.estimator.RunConfig` instance that defines the cluster.
    """

    return self._config

  @config.setter
  def config(self, config):
    """Configures the placement strategy with the given cluster description.

    Args:
      config: A :class:`tf.estimator.RunConfig` instance that defines the
        cluster.
    """

    self._config = config

[docs]  @abc.abstractmethod
  def should_build_ensemble(self, num_subnetworks):
    """Whether to build the ensemble on the current worker.

    Args:
      num_subnetworks: Integer number of subnetworks to train in the current
        iteration.

    Returns:
      Boolean whether to build the ensemble on the current worker.
    """


[docs]  @abc.abstractmethod
  def should_build_subnetwork(self, num_subnetworks, subnetwork_index):
    """Whether to build the given subnetwork on the current worker.

    Args:
      num_subnetworks: Integer number of subnetworks to train in the current
        iteration.
      subnetwork_index: Integer index of the subnetwork in the list of the
        current iteration's subnetworks.

    Returns:
      Boolean whether to build the given subnetwork on the current worker.
    """


[docs]  @abc.abstractmethod
  def should_train_subnetworks(self, num_subnetworks):
    """Whether to train subnetworks on the current worker.

    Args:
      num_subnetworks: Integer number of subnetworks to train in the current
        iteration.

    Returns:
      Boolean whether to train subnetworks on the current worker.
    """


[docs]  @abc.abstractmethod
  @contextlib.contextmanager
  def subnetwork_devices(self, num_subnetworks, subnetwork_index):
    """A context for assigning subnetwork ops to devices."""




[docs]class ReplicationStrategy(PlacementStrategy):
  # pyformat: disable
  """A simple strategy that replicates the same graph on every worker.

  This strategy does not scale well as the number of subnetworks and workers
  increases. For :math:`m` workers, :math:`n` parameter servers, and :math:`k`
  subnetworks, this strategy will scale with :math:`O(m)` training speedup,
  :math:`O(m*n*k)` variable fetches from parameter servers, and :math:`O(k)`
  memory required per worker. Additionally there will be :math:`O(m)` stale
  gradients per subnetwork when training with asynchronous SGD.

  Returns:
    A :class:`ReplicationStrategy` instance for the current cluster.
  """
  # pyformat: enable

[docs]  def should_build_ensemble(self, num_subnetworks):
    return True


[docs]  def should_build_subnetwork(self, num_subnetworks, subnetwork_index):
    return True


[docs]  def should_train_subnetworks(self, num_subnetworks):
    return True


[docs]  @contextlib.contextmanager
  def subnetwork_devices(self, num_subnetworks, subnetwork_index):
    # Use default devices.
    yield




[docs]class RoundRobinStrategy(PlacementStrategy):
  # pyformat: disable
  """A strategy that round-robin assigns subgraphs to specific workers.

  Specifically, it selects dedicated workers to only train ensemble variables,
  and round-robin assigns subnetworks to dedicated subnetwork-training workers.

  Unlike :class:`ReplicationStrategy`, this strategy scales better with the
  number of subnetworks, workers, and parameter servers. For :math:`m` workers,
  :math:`n` parameter servers, and :math:`k` subnetworks, this strategy will
  scale with :math:`O(m/k)` training speedup, :math:`O(m*n/k)` variable fetches
  from parameter servers, and :math:`O(1)` memory required per worker.
  Additionally, there will only be :math:`O(m/k)` stale gradients per subnetwork
  when training with asynchronous SGD, which reduces training instability versus
  :class:`ReplicationStrategy`.

  When there are more workers than subnetworks, this strategy assigns
  subnetworks to workers modulo the number of subnetworks.

  Conversely, when there are more subnetworks than workers, this round robin
  assigns subnetworks modulo the number of workers. So certain workers may end
  up training more than one subnetwork.

  This strategy gracefully handles scenarios when the number of subnetworks
  does not perfectly divide the number of workers and vice-versa. It also
  supports different numbers of subnetworks at different iterations, and
  reloading training with a resized cluster.

  Args:
    drop_remainder: Bool whether to drop remaining subnetworks that haven't been
      assigned to a worker in the remainder after perfect division of workers by
      the current iteration's num_subnetworks + 1. When :code:`True`, each subnetwork
      worker will only train a single subnetwork, and subnetworks that have not
      been assigned to assigned to a worker are dropped. NOTE: This can result
      in subnetworks not being assigned to any worker when
      num_workers < num_subnetworks + 1. When :code:`False`, remaining subnetworks
      during the round-robin assignment will be placed on workers that already
      have a subnetwork.

  Returns:
    A :class:`RoundRobinStrategy` instance for the current cluster.
  """
  # pyformat: enable

  # TODO: Allow user to disable ensemble workers. For example, when there
  # are no ensemble variables to train, such as in a uniform average ensemble,
  # there is no need for a non-chief to create the full ensemble during
  # training, except for the chief to initialize the ensemble's non-trainable
  # variables.

  # TODO: Optional code organization suggestion:
  # Explicitly define what a "task" is, to make the below code clearer. One way
  # of doing this:
  #
  # def _worker_tasks(self, num_subnetworks):
  #   """Returns the set of tasks that this worker can work on.
  #
  #   Each task is represented by an integer between 0 and num_subnetworks
  #   (inclusive). 0 corresponds to the task of training the ensemble(s), 1
  #   corresponds to the task of training subnetwork 0, 2 corresponds to the
  #   task of training subnetwork 1, and so on.
  #
  #   Examples:
  #     - 1 worker, 3 subnetworks. This would return {0, 1, 2, 3} for the only
  #       worker, since the only worker would have to train the ensemble(s) and
  #       all 3 subnetworks.
  #     - 2 workers, 3 subnetworks. This would return {0} for worker 0, and
  #       {1, 2, 3} for worker 1. This means that the first worker trains the
  #       ensemble(s), while the second worker trains all three subnetworks.
  #     - 4 workers, 3 subnetworks. This would return {0} for worker 0, {1} for
  #       worker 1, {2} for worker 2, and {3} for worker 3. This means that
  #       worker 0 trains the ensemble(s) while the rest of the workers train
  #       one subnetwork each.
  #     - 5 workers, 3 subnetworks. This would return {0} for worker 0, {1} for
  #       worker 1, {2} for worker 2, {3} for worker 3, and {1} for worker 4.
  #       This is like the previous case, except that worker 4 also helps to
  #       train subnetwork 0.
  #   """
  #
  # That way, should_build_ensemble can just be:
  #
  #   return 0 in self._worker_tasks(...)
  #
  # then should_build_subnetwork can just be:
  #
  #   if (subnetwork_index in self._worker_tasks(...) or 0 in
  #       subnetwork_index in self._worker_tasks(...)):
  #     return True
  #   return False
  #
  # and should_train_subnetwork can just be:
  #
  #   return subnetwork_index in self._worker_tasks(...)

  def __init__(self, drop_remainder=False, dedicate_parameter_servers=True):
    self._drop_remainder = drop_remainder
    self._dedicate_parameter_servers = dedicate_parameter_servers

  @property
  def _num_workers(self):
    return self.config.num_worker_replicas

  @property
  def _worker_index(self):
    return self.config.global_id_in_cluster or 0

  def _worker_task(self, num_subnetworks):
    """Returns the worker index modulo the number of subnetworks."""

    if self._drop_remainder and self._num_workers > 1 and (num_subnetworks >
                                                           self._num_workers):
      logging.log_first_n(
          logging.WARNING,
          "With drop_remainer=True, %s workers and %s subnetworks, the last %s "
          "subnetworks will be dropped and will not be trained", 1,
          self._num_workers, num_subnetworks,
          num_subnetworks - self._num_workers - 1)
    # The first worker will always build the ensemble so we add 1.
    return self._worker_index % (num_subnetworks + 1)

[docs]  def should_build_ensemble(self, num_subnetworks):
    if num_subnetworks == 1:
      return True
    worker_task = self._worker_task(num_subnetworks)
    # The ensemble builder is always the first worker task.
    return worker_task == 0


[docs]  def should_build_subnetwork(self, num_subnetworks, subnetwork_index):
    if num_subnetworks == 1:
      return True
    worker_task = self._worker_task(num_subnetworks)
    if worker_task == 0:
      # The zeroth index worker is an ensemble worker.
      return True

    subnetwork_worker_index = worker_task - 1
    if self._drop_remainder:
      return subnetwork_worker_index == subnetwork_index

    workers_per_subnetwork = self._num_workers // (num_subnetworks + 1)
    if self._num_workers % (num_subnetworks + 1) == 0:
      num_subnetwork_workers = num_subnetworks
    elif self._worker_index >= workers_per_subnetwork * (num_subnetworks + 1):
      num_subnetwork_workers = self._num_workers % (num_subnetworks + 1) - 1
    else:
      num_subnetwork_workers = num_subnetworks
    return subnetwork_worker_index == subnetwork_index % num_subnetwork_workers


[docs]  def should_train_subnetworks(self, num_subnetworks):
    if num_subnetworks == 1 or self._num_workers == 1:
      return True
    return not self.should_build_ensemble(num_subnetworks)


[docs]  @contextlib.contextmanager
  def subnetwork_devices(self, num_subnetworks, subnetwork_index):
    if not self._dedicate_parameter_servers:
      # Use default device placement.
      yield
      return

    # Each subnetwork gets its own dedicated parameter servers
    num_ps_replicas = self.config.num_ps_replicas
    ps_numbers = np.array(range(num_ps_replicas))
    subnetwork_group = subnetwork_index
    if num_ps_replicas > 0 and num_subnetworks > num_ps_replicas:
      subnetwork_group = subnetwork_index % num_ps_replicas
    ps_group = np.array_split(ps_numbers, num_subnetworks)[subnetwork_group]

    # Assign ops to parameter servers based on hashed op names.
    ps_strategy = _OpNameHashStrategy(len(ps_group))

    def device_fn(op):
      """Assigns variables to a subnetwork's dedicated parameter servers."""

      # Import here to avoid strict BUILD deps check.
      from tensorflow.core.framework import node_def_pb2  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top
      node_def = op if isinstance(op, node_def_pb2.NodeDef) else op.node_def
      from tensorflow.python.training import device_setter  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top
      if num_ps_replicas > 0 and node_def.op in device_setter.STANDARD_PS_OPS:
        # ps_group lists the task ids in the group. Adding the first task id in
        # the group to the task number determined by the PS strategy gives the
        # correct parameter server assignment.
        return "/job:ps/task:{}".format(ps_group[0] + ps_strategy(op))
      return op.device

    with tf_compat.v1.device(device_fn):
      yield
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  Source code for adanet.ensemble.ensembler

# Copyright 2019 The AdaNet Authors. All Rights Reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Ensembler definitions."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import abc
import collections

import six


[docs]class TrainOpSpec(
    collections.namedtuple("TrainOpSpec",
                           ["train_op", "chief_hooks", "hooks"])):
  """A data structure for specifying ensembler training operations.

  Args:
    train_op: Op for the training step.
    chief_hooks: Iterable of :class:`tf.train.SessionRunHook` objects to run on
      the chief worker during training.
    hooks: Iterable of :class:`tf.train.SessionRunHook` objects to run on all
      workers during training.

  Returns:
    An :class:`adanet.ensemble.TrainOpSpec` object.
  """

  def __new__(cls, train_op, chief_hooks=None, hooks=None):
    # Make hooks immutable.
    chief_hooks = tuple(chief_hooks) if chief_hooks else ()
    hooks = tuple(hooks) if hooks else ()
    return super(TrainOpSpec, cls).__new__(cls, train_op, chief_hooks, hooks)



[docs]@six.add_metaclass(abc.ABCMeta)
class Ensemble(object):
  """An abstract ensemble of subnetworks."""

  @abc.abstractproperty
  def logits(self):
    """Ensemble logits :class:`tf.Tensor`."""

  @abc.abstractproperty
  def subnetworks(self):
    """Returns an ordered :class:`Iterable` of the ensemble's subnetworks."""

  @property
  def predictions(self):
    """Optional dict of Ensemble predictions to be merged in EstimatorSpec.

    These will be additional (over the default included by the head) predictions
    which will be included in the EstimatorSpec in `predictions` and
    `export_outputs` (wrapped as PredictOutput).
    """
    return None



[docs]@six.add_metaclass(abc.ABCMeta)
class Ensembler(object):
  """An abstract ensembler."""

  @abc.abstractproperty
  def name(self):
    """This ensembler's unique string name."""

[docs]  @abc.abstractmethod
  def build_ensemble(self, subnetworks, previous_ensemble_subnetworks, features,
                     labels, logits_dimension, training, iteration_step,
                     summary, previous_ensemble, previous_iteration_checkpoint):
    # pyformat: disable
    """Builds an ensemble of subnetworks.

    Accessing the global step via :meth:`tf.train.get_or_create_global_step()`
    or :meth:`tf.train.get_global_step()` within this scope will return an
    incrementable iteration step since the beginning of the iteration.

    Args:
      subnetworks: Ordered iterable of :class:`adanet.subnetwork.Subnetwork`
        instances to ensemble. Must have at least one element.
      previous_ensemble_subnetworks: Ordered iterable of
        :class:`adanet.subnetwork.Subnetwork` instances present in previous
        ensemble to be used. The subnetworks from previous_ensemble not
        included in this list should be pruned. Can be set to None or empty.
      features: Input :code:`dict` of :class:`tf.Tensor` objects.
      labels: Labels :class:`tf.Tensor` or a dictionary of string label name to
        :class:`tf.Tensor` (for multi-head). Can be :code:`None`.
      logits_dimension: Size of the last dimension of the logits
        :class:`tf.Tensor`. Typically, logits have for shape `[batch_size,
        logits_dimension]`.
      training: A python boolean indicating whether the graph is in training
        mode or prediction mode.
      iteration_step: Integer :class:`tf.Tensor` representing the step since the
        beginning of the current iteration, as opposed to the global step.
      summary: An :class:`adanet.Summary` for scoping summaries to individual
        ensembles in Tensorboard. Using :meth:`tf.summary` within this scope
        will use this :class:`adanet.Summary` under the hood.
      previous_ensemble: The best :class:`adanet.Ensemble` from iteration *t-1*.
        The created subnetwork will extend the previous ensemble to form the
        :class:`adanet.Ensemble` at iteration *t*.
      previous_iteration_checkpoint: The `tf.train.Checkpoint` object associated
        with the previous iteration.

    Returns:
      An :class:`adanet.ensemble.Ensemble` subclass instance.
    """

    # pyformat: enable

[docs]  @abc.abstractmethod
  def build_train_op(self, ensemble, loss, var_list, labels, iteration_step,
                     summary, previous_ensemble):
    # pyformat: disable
    """Returns an op for training an ensemble.

    Accessing the global step via :meth:`tf.train.get_or_create_global_step`
    or :meth:`tf.train.get_global_step` within this scope will return an
    incrementable iteration step since the beginning of the iteration.

    Args:
      ensemble: The :class:`adanet.ensemble.Ensemble` subclass instance returned
        by this instance's :meth:`build_ensemble`.
      loss: A :class:`tf.Tensor` containing the ensemble's loss to minimize.
      var_list: List of ensemble :class:`tf.Variable` parameters to update as
        part of the training operation.
      labels: Labels :class:`tf.Tensor` or a dictionary of string label name to
        :class:`tf.Tensor` (for multi-head).
      iteration_step: Integer :class:`tf.Tensor` representing the step since the
        beginning of the current iteration, as opposed to the global step.
      summary: An :class:`adanet.Summary` for scoping summaries to individual
        ensembles in Tensorboard. Using :code:`tf.summary` within this scope
        will use this :class:`adanet.Summary` under the hood.
      previous_ensemble: The best :class:`adanet.ensemble.Ensemble` from the
        previous iteration.
    Returns:
      Either a train op or an :class:`adanet.ensemble.TrainOpSpec`.
    """


    # pyformat: enable
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  Source code for adanet.ensemble.mean

# Copyright 2019 The AdaNet Authors. All Rights Reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Adanet implementation for an ensembler for the mean of subnetwork logits."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections

from adanet.ensemble.ensembler import Ensemble
from adanet.ensemble.ensembler import Ensembler
import tensorflow.compat.v2 as tf


[docs]class MeanEnsemble(
    collections.namedtuple('MeanEnsemble',
                           ['logits', 'subnetworks', 'predictions']),
    Ensemble):
  r"""Mean ensemble.

  Attributes:
    logits: Logits :class:`tf.Tensor` or dict of string to logits
      :class:`tf.Tensor` (for multi-head).
    subnetworks: List of :class:`adanet.subnetwork.Subnetwork` instances that
      form this ensemble.
    predictions: Optional dict mapping prediction keys to Tensors. MeanEnsembler
      can export mean_last_layer if the subnetworks have the last_layer of the
      same dimension.
  """
  # Key in predictions and export_outputs for mean of last_layer.
  MEAN_LAST_LAYER = 'mean_last_layer'

  def __new__(cls,
              logits,
              subnetworks=None,
              predictions=None):
    return super(MeanEnsemble, cls).__new__(
        cls,
        logits=logits,
        subnetworks=list(subnetworks or []),
        predictions=predictions)



[docs]class MeanEnsembler(Ensembler):
  # pyformat: disable
  r"""Ensembler that takes the mean of logits returned by its subnetworks.

  Attributes:
    name: Optional name for the ensembler. Defaults to 'complexity_regularized'.
    add_mean_last_layer_predictions: Set to True to add mean of last_layer in
      subnetworks in estimator's predictions and export outputs.
  """
  # pyformat: enable

  def __init__(self,
               name=None, add_mean_last_layer_predictions=False):
    self._name = name
    self._add_mean_last_layer_predictions = add_mean_last_layer_predictions

  @property
  def name(self):
    if self._name:
      return self._name
    return 'mean'

  def _assert_last_layer_compatible_shapes(self, tensors):
    if not tensors:
      return True
    first_shape = tensors[0].shape
    for tensor in tensors:
      try:
        first_shape.assert_is_compatible_with(tensor.shape)
      except ValueError:
        raise ValueError(
            'Shape of `last_layer` tensors must be same if setting '
            '`add_mean_last_layer_predictions` to True. Found %s vs %s.'
            % (first_shape, tensor.shape))
    return True

[docs]  def build_ensemble(self, subnetworks, previous_ensemble_subnetworks, features,
                     labels, logits_dimension, training, iteration_step,
                     summary, previous_ensemble, previous_iteration_checkpoint):
    del features, labels, logits_dimension, training, iteration_step  # unused
    del previous_ensemble_subnetworks, previous_iteration_checkpoint  # unused

    if isinstance(subnetworks[0].logits, dict):
      mean_logits = {
          key: tf.math.reduce_mean(
              tf.stack([s.logits[key] for s in subnetworks]), axis=0)
          for key in subnetworks[0].logits
      }
    else:
      mean_logits = tf.math.reduce_mean(
          tf.stack([s.logits for s in subnetworks]), axis=0)

    mean_last_layer = None
    if self._add_mean_last_layer_predictions:
      mean_last_layer = {}
      if isinstance(subnetworks[0].last_layer, dict):
        for key in subnetworks[0].logits:
          last_layers = [s.last_layer[key] for s in subnetworks]
          self._assert_last_layer_compatible_shapes(last_layers)
          mean_last_layer['{}_{}'.format(MeanEnsemble.MEAN_LAST_LAYER,
                                         key)] = tf.math.reduce_mean(
                                             tf.stack(last_layers), axis=0)
      else:
        last_layers = [subnetwork.last_layer for subnetwork in subnetworks]
        self._assert_last_layer_compatible_shapes(last_layers)
        mean_last_layer = {
            MeanEnsemble.MEAN_LAST_LAYER:
                tf.math.reduce_mean(tf.stack(last_layers), axis=0)
        }

    return MeanEnsemble(
        subnetworks=subnetworks,
        logits=mean_logits,
        predictions=mean_last_layer)


[docs]  def build_train_op(self, ensemble, loss, var_list, labels, iteration_step,
                     summary, previous_ensemble):
    del ensemble, loss, var_list, labels, iteration_step, summary  # unused
    del previous_ensemble  # unused
    return tf.no_op()
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  Source code for adanet.ensemble.strategy

# Copyright 2019 The AdaNet Authors. All Rights Reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Search strategy algorithms."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import abc
import collections

import six


[docs]class Candidate(
    collections.namedtuple("Candidate", [
        "name", "subnetwork_builders", "previous_ensemble_subnetwork_builders"
    ])):
  """An ensemble candidate found during the search phase.

  Args:
    name: String name of this ensemble candidate.
    subnetwork_builders: Candidate :class:`adanet.subnetwork.Builder` instances
      to include in the ensemble.
    previous_ensemble_subnetwork_builders: :class:`adanet.subnetwork.Builder`
      instances to include from the previous ensemble.
  """

  def __new__(cls, name, subnetwork_builders,
              previous_ensemble_subnetwork_builders):
    return super(Candidate, cls).__new__(
        cls,
        name=name,
        subnetwork_builders=tuple(subnetwork_builders),
        previous_ensemble_subnetwork_builders=tuple(
            previous_ensemble_subnetwork_builders or []))



[docs]@six.add_metaclass(abc.ABCMeta)
class Strategy(object):  # pytype: disable=ignored-metaclass
  """An abstract ensemble strategy."""

  __metaclass__ = abc.ABCMeta

[docs]  @abc.abstractmethod
  def generate_ensemble_candidates(self, subnetwork_builders,
                                   previous_ensemble_subnetwork_builders):
    """Generates ensemble candidates to search over this iteration.

    Args:
      subnetwork_builders: Candidate :class:`adanet.subnetwork.Builder`
        instances for this iteration.
      previous_ensemble_subnetwork_builders: :class:`adanet.subnetwork.Builder`
        instances from the previous ensemble. Including only a subset of these
        in a returned :class:`adanet.ensemble.Candidate` is equivalent to
        pruning the previous ensemble.

    Returns:
      An iterable of :class:`adanet.ensemble.Candidate` instances to train and
      consider this iteration.
    """



    # TODO: Pruning the previous subnetwork may require more metadata
    # such as `subnetwork.Reports` and `ensemble.Reports` to make smart
    # decisions.


[docs]class SoloStrategy(Strategy):
  """Produces a model composed of a single subnetwork.

  *An ensemble of one.*

  This is effectively the same as pruning all previous ensemble subnetworks,
  and only adding one subnetwork candidate to the ensemble.
  """

[docs]  def generate_ensemble_candidates(self, subnetwork_builders,
                                   previous_ensemble_subnetwork_builders):
    return [
        Candidate("{}_solo".format(subnetwork_builder.name),
                  [subnetwork_builder], None)
        for subnetwork_builder in subnetwork_builders
    ]




[docs]class GrowStrategy(Strategy):
  """Greedily grows an ensemble, one subnetwork at a time."""

[docs]  def generate_ensemble_candidates(self, subnetwork_builders,
                                   previous_ensemble_subnetwork_builders):
    return [
        Candidate("{}_grow".format(subnetwork_builder.name),
                  [subnetwork_builder], previous_ensemble_subnetwork_builders)
        for subnetwork_builder in subnetwork_builders
    ]




[docs]class AllStrategy(Strategy):
  """Ensembles all subnetworks from the current iteration."""

[docs]  def generate_ensemble_candidates(self, subnetwork_builders,
                                   previous_ensemble_subnetwork_builders):
    return [
        Candidate("all", subnetwork_builders,
                  previous_ensemble_subnetwork_builders)
    ]
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  Source code for adanet.ensemble.weighted

# Copyright 2019 The AdaNet Authors. All Rights Reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Adanet implementation for weighted Subnetwork and Ensemblers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections

from absl import logging
from adanet import tf_compat
from adanet.ensemble.ensembler import Ensemble
from adanet.ensemble.ensembler import Ensembler
import tensorflow.compat.v2 as tf


def _stringify(key):
  """Flattens tuple and list keys into strings."""

  if isinstance(key, (tuple, list)):
    return "_".join([str(el) for el in key])
  return key


def _lookup_if_dict(target, key):
  if isinstance(target, dict):
    return target[key]
  return target


[docs]class WeightedSubnetwork(
    collections.namedtuple(
        "WeightedSubnetwork",
        ["name", "iteration_number", "weight", "logits", "subnetwork"])):
  # pyformat: disable
  """An AdaNet weighted subnetwork.

  A weighted subnetwork is a weight applied to a subnetwork's last layer
  or logits (depending on the mixture weights type).

  Args:
    name: String name of :code:`subnetwork` as defined by its
      :class:`adanet.subnetwork.Builder`.
    iteration_number: Integer iteration when the subnetwork was created.
    weight: The weight :class:`tf.Tensor` or dict of string to weight
      :class:`tf.Tensor` (for multi-head) to apply to this subnetwork. The
      AdaNet paper refers to this weight as :math:`w` in Equations (4), (5),
      and (6).
    logits: The output :class:`tf.Tensor` or dict of string to weight
      :class:`tf.Tensor` (for multi-head) after the matrix multiplication of
      :code:`weight` and the subnetwork's :code:`last_layer`. The output's shape
      is [batch_size, logits_dimension]. It is equivalent to a linear logits
      layer in a neural network.
    subnetwork: The :class:`adanet.subnetwork.Subnetwork` to weight.

  Returns:
    An :class:`adanet.ensemble.WeightedSubnetwork` object.
  """
  # pyformat: enable

  def __new__(cls,
              name="",
              iteration_number=0,
              weight=None,
              logits=None,
              subnetwork=None):
    return super(WeightedSubnetwork, cls).__new__(
        cls,
        name=name,
        iteration_number=iteration_number,
        weight=weight,
        logits=logits,
        subnetwork=subnetwork)



[docs]class ComplexityRegularized(
    collections.namedtuple("ComplexityRegularized", [
        "weighted_subnetworks", "bias", "logits", "subnetworks",
        "complexity_regularization"
    ]), Ensemble):
  r"""An AdaNet ensemble where subnetworks are regularized by model complexity.

  Hence an ensemble is a collection of subnetworks which forms a neural network
  through the weighted sum of their outputs:

  .. math::

      F(x) = \sum_{i=1}^{N}w_ih_i(x) + b

  Args:
    weighted_subnetworks: List of :class:`adanet.ensemble.WeightedSubnetwork`
      instances that form this ensemble. Ordered from first to most recent.
    bias: Bias term :class:`tf.Tensor` or dict of string to bias term
      :class:`tf.Tensor` (for multi-head) for the ensemble's logits.
    logits: Logits :class:`tf.Tensor` or dict of string to logits
      :class:`tf.Tensor` (for multi-head). The result of the function *f* as
      defined in Section 5.1 which is the sum of the logits of all
      :class:`adanet.WeightedSubnetwork` instances in ensemble.
    subnetworks: List of :class:`adanet.subnetwork.Subnetwork` instances that
      form this ensemble. This is kept together with weighted_subnetworks for
      legacy reasons.
    complexity_regularization: Regularization to be added in the Adanet loss.

  Returns:
    An :class:`adanet.ensemble.Weighted` instance.
  """

  def __new__(cls,
              weighted_subnetworks,
              bias,
              logits,
              subnetworks=None,
              complexity_regularization=None):
    return super(ComplexityRegularized, cls).__new__(
        cls,
        weighted_subnetworks=list(weighted_subnetworks),
        bias=bias,
        logits=logits,
        subnetworks=list(subnetworks or []),
        complexity_regularization=complexity_regularization)



[docs]class MixtureWeightType(object):
  """Mixture weight types available for learning subnetwork contributions.

  The following mixture weight types are defined:

  * `SCALAR`: Produces a rank 0 `Tensor` mixture weight.
  * `VECTOR`: Produces a rank 1 `Tensor` mixture weight.
  * `MATRIX`: Produces a rank 2 `Tensor` mixture weight.
  """

  SCALAR = "scalar"
  VECTOR = "vector"
  MATRIX = "matrix"



[docs]class ComplexityRegularizedEnsembler(Ensembler):
  # pyformat: disable
  r"""The AdaNet algorithm implemented as an :class:`adanet.ensemble.Ensembler`.

  The AdaNet algorithm was introduced in the [Cortes et al. ICML 2017] paper:
  https://arxiv.org/abs/1607.01097.

  The AdaNet algorithm uses a weak learning algorithm to iteratively generate a
  set of candidate subnetworks that attempt to minimize the loss function
  defined in Equation (4) as part of an ensemble. At the end of each iteration,
  the best candidate is chosen based on its ensemble's complexity-regularized
  train loss. New subnetworks are allowed to use any subnetwork weights within
  the previous iteration's ensemble in order to improve upon them. If the
  complexity-regularized loss of the new ensemble, as defined in Equation (4),
  is less than that of the previous iteration's ensemble, the AdaNet algorithm
  continues onto the next iteration.

  AdaNet attempts to minimize the following loss function to learn the mixture
  weights :math:`w` of each subnetwork :math:`h` in the ensemble with
  differentiable convex non-increasing surrogate loss function :math:`\Phi`:

  Equation (4):

  .. math::

      F(w) = \frac{1}{m} \sum_{i=1}^{m} \Phi \left(\sum_{j=1}^{N}w_jh_j(x_i),
      y_i \right) + \sum_{j=1}^{N} \left(\lambda r(h_j) + \beta \right) |w_j|

  with :math:`\lambda >= 0` and :math:`\beta >= 0`.

  Args:
    optimizer: String, :class:`tf.train.Optimizer` object, or callable that
      creates the optimizer to use for training the ensemble weights. If left
      as :code:`None`, :meth:`tf.no_op()` is used instead.
    mixture_weight_type: The :class:`adanet.ensemble.MixtureWeightType` defining
      which mixture weight type to learn on top of the subnetworks' logits.
    mixture_weight_initializer: The initializer for mixture_weights. When
      :code:`None`, the default is different according to
      :code:`mixture_weight_type`:

        - :code:`SCALAR` initializes to :math:`1/N` where :math:`N` is the
          number of subnetworks in the ensemble giving a uniform average.
        - :code:`VECTOR` initializes each entry to :math:`1/N` where :math:`N`
          is the number of subnetworks in the ensemble giving a uniform average.
        - :code:`MATRIX` uses :meth:`tf.zeros_initializer`.
    warm_start_mixture_weights: Whether, at the beginning of an iteration, to
      initialize the mixture weights of the subnetworks from the previous
      ensemble to their learned value at the previous iteration, as opposed to
      retraining them from scratch. Takes precedence over the value for
      :code:`mixture_weight_initializer` for subnetworks from previous
      iterations.
    model_dir: The model dir to use for warm-starting mixture weights and bias
      at the logit layer. Ignored if :code:`warm_start_mixture_weights` is
      :code:`False`.
    adanet_lambda: Float multiplier :math:`\lambda` for applying :math:`L1`
      regularization to subnetworks' mixture weights :math:`w` in the ensemble
      proportional to their complexity. See Equation (4) in the AdaNet paper.
    adanet_beta: Float :math:`L1` regularization multiplier :math:`\beta` to apply
      equally to all subnetworks' weights :math:`w` in the ensemble regardless of
      their complexity. See Equation (4) in the AdaNet paper.
    use_bias: Whether to add a bias term to the ensemble's logits.
    name: Optional name for the ensembler. Defaults to 'complexity_regularized'.

  Returns:
    An `adanet.ensemble.ComplexityRegularizedEnsembler` instance.

  Raises:
    ValueError: if :code:`warm_start_mixture_weights` is :code:`True` but
    :code:`model_dir` is :code:`None`.
  """
  # pyformat: enable

  def __init__(self,
               optimizer=None,
               mixture_weight_type=MixtureWeightType.SCALAR,
               mixture_weight_initializer=None,
               warm_start_mixture_weights=False,
               model_dir=None,
               adanet_lambda=0.,
               adanet_beta=0.,
               use_bias=False,
               name=None):
    if warm_start_mixture_weights:
      if model_dir is None:
        raise ValueError("model_dir cannot be None when "
                         "warm_start_mixture_weights is True.")

    self._optimizer = optimizer
    self._mixture_weight_type = mixture_weight_type
    self._mixture_weight_initializer = mixture_weight_initializer
    self._warm_start_mixture_weights = warm_start_mixture_weights
    self._model_dir = model_dir
    self._adanet_lambda = adanet_lambda
    self._adanet_beta = adanet_beta
    self._use_bias = use_bias
    self._name = name

  @property
  def name(self):
    if self._name:
      return self._name
    return "complexity_regularized"

[docs]  def build_ensemble(self,
                     subnetworks,
                     previous_ensemble_subnetworks,
                     features,
                     labels,
                     logits_dimension,
                     training,
                     iteration_step,
                     summary,
                     previous_ensemble,
                     previous_iteration_checkpoint=None):
    del features, labels, logits_dimension, training, iteration_step  # unused
    weighted_subnetworks = []
    subnetwork_index = 0
    num_subnetworks = len(subnetworks)

    if previous_ensemble_subnetworks and previous_ensemble:
      num_subnetworks += len(previous_ensemble_subnetworks)
      for weighted_subnetwork in previous_ensemble.weighted_subnetworks:
        if weighted_subnetwork.subnetwork not in previous_ensemble_subnetworks:
          # Pruned.
          continue
        weight_initializer = None
        if self._warm_start_mixture_weights:
          if isinstance(weighted_subnetwork.subnetwork.last_layer, dict):
            weight_initializer = {
                key: self._load_variable(weighted_subnetwork.weight[key],
                                         previous_iteration_checkpoint)
                for key in sorted(weighted_subnetwork.subnetwork.last_layer)
            }
          else:
            weight_initializer = self._load_variable(
                weighted_subnetwork.weight, previous_iteration_checkpoint)
        with tf_compat.v1.variable_scope(
            "weighted_subnetwork_{}".format(subnetwork_index)):
          weighted_subnetworks.append(
              self._build_weighted_subnetwork(
                  weighted_subnetwork.subnetwork,
                  num_subnetworks,
                  weight_initializer=weight_initializer))
        subnetwork_index += 1

    for subnetwork in subnetworks:
      with tf_compat.v1.variable_scope(
          "weighted_subnetwork_{}".format(subnetwork_index)):
        weighted_subnetworks.append(
            self._build_weighted_subnetwork(subnetwork, num_subnetworks))
      subnetwork_index += 1

    if previous_ensemble:
      if len(
          previous_ensemble.subnetworks) == len(previous_ensemble_subnetworks):
        bias = self._create_bias_term(
            weighted_subnetworks,
            prior=previous_ensemble.bias,
            previous_iteration_checkpoint=previous_iteration_checkpoint)
      else:
        bias = self._create_bias_term(
            weighted_subnetworks,
            prior=None,
            previous_iteration_checkpoint=previous_iteration_checkpoint)
        logging.info("Builders using a pruned set of the subnetworks "
                     "from the previous ensemble, so its ensemble's bias "
                     "term will not be warm started with the previous "
                     "ensemble's bias.")
    else:
      bias = self._create_bias_term(weighted_subnetworks)

    logits = self._create_ensemble_logits(weighted_subnetworks, bias, summary)
    complexity_regularization = 0
    if isinstance(logits, dict):
      for key in sorted(logits):
        complexity_regularization += self._compute_complexity_regularization(
            weighted_subnetworks, summary, key)
    else:
      complexity_regularization = self._compute_complexity_regularization(
          weighted_subnetworks, summary)

    return ComplexityRegularized(
        weighted_subnetworks=weighted_subnetworks,
        bias=bias,
        subnetworks=[ws.subnetwork for ws in weighted_subnetworks],
        logits=logits,
        complexity_regularization=complexity_regularization)


  def _load_variable(self, var, previous_iteration_checkpoint):
    latest_checkpoint = tf.train.latest_checkpoint(self._model_dir)
    status = previous_iteration_checkpoint.restore(latest_checkpoint)
    try:
      status.expect_partial().assert_nontrivial_match()
    except AssertionError:
      # Fall back to v1 checkpoint when not using v2 checkpoint.
      return tf.train.load_variable(self._model_dir, tf_compat.tensor_name(var))
    else:
      with tf_compat.v1.Session() as sess:
        status.initialize_or_restore(sess)
        return sess.run(var)

  def _compute_adanet_gamma(self, complexity):
    """For a subnetwork, computes: lambda * r(h) + beta."""

    if self._adanet_lambda == 0.:
      return self._adanet_beta
    return tf.scalar_mul(self._adanet_lambda,
                         tf.cast(complexity,
                                 dtype=tf.float32)) + self._adanet_beta

  def _select_mixture_weight_initializer(self, num_subnetworks):
    if self._mixture_weight_initializer:
      return self._mixture_weight_initializer
    if (self._mixture_weight_type == MixtureWeightType.SCALAR or
        self._mixture_weight_type == MixtureWeightType.VECTOR):
      return tf_compat.v1.constant_initializer(1. / num_subnetworks)
    return tf_compat.v1.zeros_initializer()

  def _build_weighted_subnetwork(self,
                                 subnetwork,
                                 num_subnetworks,
                                 weight_initializer=None):
    """Builds an `adanet.ensemble.WeightedSubnetwork`.

    Args:
      subnetwork: The `Subnetwork` to weight.
      num_subnetworks: The number of subnetworks in the ensemble.
      weight_initializer: Initializer for the weight variable.

    Returns:
      A `WeightedSubnetwork` instance.

    Raises:
      ValueError: When the subnetwork's last layer and logits dimension do
        not match and requiring a SCALAR or VECTOR mixture weight.
    """

    if isinstance(subnetwork.last_layer, dict):
      logits, weight = {}, {}
      for i, key in enumerate(sorted(subnetwork.last_layer)):
        logits[key], weight[key] = self._build_weighted_subnetwork_helper(
            subnetwork, num_subnetworks,
            _lookup_if_dict(weight_initializer, key), key, i)
    else:
      logits, weight = self._build_weighted_subnetwork_helper(
          subnetwork, num_subnetworks, weight_initializer)

    return WeightedSubnetwork(
        subnetwork=subnetwork, logits=logits, weight=weight)

  def _build_weighted_subnetwork_helper(self,
                                        subnetwork,
                                        num_subnetworks,
                                        weight_initializer=None,
                                        key=None,
                                        index=None):
    """Returns the logits and weight of the `WeightedSubnetwork` for key."""

    # Treat subnetworks as if their weights are frozen, and ensure that
    # mixture weight gradients do not propagate through.
    last_layer = _lookup_if_dict(subnetwork.last_layer, key)
    logits = _lookup_if_dict(subnetwork.logits, key)
    weight_shape = None
    last_layer_size = last_layer.get_shape().as_list()[-1]
    logits_size = logits.get_shape().as_list()[-1]
    batch_size = tf.shape(input=last_layer)[0]

    if weight_initializer is None:
      weight_initializer = self._select_mixture_weight_initializer(
          num_subnetworks)
      if self._mixture_weight_type == MixtureWeightType.SCALAR:
        weight_shape = []
      if self._mixture_weight_type == MixtureWeightType.VECTOR:
        weight_shape = [logits_size]
      if self._mixture_weight_type == MixtureWeightType.MATRIX:
        weight_shape = [last_layer_size, logits_size]

    with tf_compat.v1.variable_scope(
        "logits_{}".format(index) if index else "logits"):
      weight = tf_compat.v1.get_variable(
          name="mixture_weight",
          shape=weight_shape,
          initializer=weight_initializer)
      if self._mixture_weight_type == MixtureWeightType.MATRIX:
        # TODO: Add Unit tests for the ndims == 3 path.
        ndims = len(last_layer.get_shape().as_list())
        if ndims > 3:
          raise NotImplementedError(
              "Last Layer with more than 3 dimensions are not supported with "
              "matrix mixture weights.")
        # This is reshaping [batch_size, timesteps, emb_dim ] to
        # [batch_size x timesteps, emb_dim] for matrix multiplication
        # and reshaping back.
        if ndims == 3:
          logging.info("Rank 3 tensors like [batch_size, timesteps, d]  are "
                       "reshaped to rank 2 [ batch_size x timesteps, d] for "
                       "the weight matrix multiplication, and are reshaped "
                       "to their original shape afterwards.")
          last_layer = tf.reshape(last_layer, [-1, last_layer_size])
        logits = tf.matmul(last_layer, weight)
        if ndims == 3:
          logits = tf.reshape(logits, [batch_size, -1, logits_size])
      else:
        logits = tf.multiply(logits, weight)
    return logits, weight

  def _create_bias_term(self,
                        weighted_subnetworks,
                        prior=None,
                        previous_iteration_checkpoint=None):
    """Returns a bias term vector.

    If `use_bias` is set, then it returns a trainable bias variable initialized
    to zero, or warm-started with the given prior. Otherwise it returns
    a non-trainable zero variable.

    Args:
      weighted_subnetworks: List of `WeightedSubnetwork` instances that form
        this ensemble. Ordered from first to most recent.
      prior: Prior bias term `Tensor` of dict of string to `Tensor` (for multi-
        head) for warm-starting the bias term variable.
      previous_iteration_checkpoint: `tf.train.Checkpoint` for iteration t-1.

    Returns:
      A bias term `Tensor` or dict of string to bias term `Tensor` (for multi-
        head).
    """

    if not isinstance(weighted_subnetworks[0].subnetwork.logits, dict):
      return self._create_bias_term_helper(weighted_subnetworks, prior,
                                           previous_iteration_checkpoint)
    bias_terms = {}
    for i, key in enumerate(sorted(weighted_subnetworks[0].subnetwork.logits)):
      bias_terms[key] = self._create_bias_term_helper(
          weighted_subnetworks, prior, previous_iteration_checkpoint, key, i)
    return bias_terms

  def _create_bias_term_helper(self,
                               weighted_subnetworks,
                               prior,
                               previous_iteration_checkpoint,
                               key=None,
                               index=None):
    """Returns a bias term for weights with the given key."""

    shape = None
    if prior is None or not self._warm_start_mixture_weights:
      prior = tf_compat.v1.zeros_initializer()
      logits = _lookup_if_dict(weighted_subnetworks[0].subnetwork.logits, key)
      dims = logits.shape.as_list()

      if len(dims) == 1:
        num_dims = 1
      else:
        assert len(dims) == 2
        num_dims = dims[-1]
        assert num_dims is not None
      shape = num_dims

    else:
      prior = self._load_variable(
          _lookup_if_dict(prior, key), previous_iteration_checkpoint)
    return tf_compat.v1.get_variable(
        name="bias_{}".format(index) if index else "bias",
        shape=shape,
        initializer=prior,
        trainable=self._use_bias)

  def _create_ensemble_logits(self, weighted_subnetworks, bias, summary):
    """Computes the AdaNet weighted ensemble logits.

    Args:
      weighted_subnetworks: List of `WeightedSubnetwork` instances that form
        this ensemble. Ordered from first to most recent.
      bias: Bias term `Tensor` or dict of string to `Tensor` (for multi-head)
        for the AdaNet-weighted ensemble logits.
      summary: A `_ScopedSummary` instance for recording ensemble summaries.

    Returns:
      A two-tuple of:
       1. Ensemble logits `Tensor` or dict of string to logits `Tensor` (for
         multi-head).
       2. Ensemble complexity regularization
    """

    if not isinstance(weighted_subnetworks[0].subnetwork.logits, dict):
      return self._create_ensemble_logits_helper(weighted_subnetworks, bias,
                                                 summary)
    logits_dict = weighted_subnetworks[0].subnetwork.logits
    return {
        key: self._create_ensemble_logits_helper(
            weighted_subnetworks, bias, summary, key=key, index=i)
        for i, key in enumerate(sorted(logits_dict))
    }

  def _create_ensemble_logits_helper(self,
                                     weighted_subnetworks,
                                     bias,
                                     summary,
                                     key=None,
                                     index=None):
    """Returns the AdaNet ensemble logits and regularization term for key."""

    subnetwork_logits = []
    for weighted_subnetwork in weighted_subnetworks:
      subnetwork_logits.append(_lookup_if_dict(weighted_subnetwork.logits, key))
    with tf_compat.v1.variable_scope(
        "logits_{}".format(index) if index else "logits"):
      ensemble_logits = _lookup_if_dict(bias, key)
      for logits in subnetwork_logits:
        ensemble_logits = tf.add(ensemble_logits, logits)
    return ensemble_logits

  def _compute_complexity_regularization(self,
                                         weighted_subnetworks,
                                         summary,
                                         key=None):
    """Returns the AdaNet regularization term contribution for a key."""

    ensemble_complexity_regularization = 0
    total_weight_l1_norms = 0
    weights = []
    for weighted_subnetwork in weighted_subnetworks:
      weight_l1_norm = tf.norm(
          tensor=_lookup_if_dict(weighted_subnetwork.weight, key), ord=1)
      total_weight_l1_norms += weight_l1_norm
      ensemble_complexity_regularization += (
          self._compute_complexity_regularization_helper(
              weight_l1_norm, weighted_subnetwork.subnetwork.complexity))
      weights.append(weight_l1_norm)

    with summary.current_scope():
      # Append a suffix for multi head summaries.
      suffix = "_{}".format(_stringify(key)) if key else ""
      summary.scalar(
          "complexity_regularization/adanet/adanet_weighted_ensemble" + suffix,
          ensemble_complexity_regularization)
      summary.histogram(
          "mixture_weights/adanet/adanet_weighted_ensemble" + suffix, weights)
      for iteration, weight in enumerate(weights):
        scope = "adanet/adanet_weighted_ensemble/subnetwork{}_{}".format(
            suffix, iteration)
        summary.scalar("mixture_weight_norms/{}".format(scope), weight)
        fraction = weight / total_weight_l1_norms
        summary.scalar("mixture_weight_fractions/{}".format(scope), fraction)
    return ensemble_complexity_regularization

  def _compute_complexity_regularization_helper(self, weight_l1_norm,
                                                complexity):
    """For a subnetwork, computes: (lambda * r(h) + beta) * |w|."""

    # Note: Unsafe comparison against float zero.
    if self._adanet_lambda == 0. and self._adanet_beta == 0.:
      return tf.constant(0., name="zero")
    return tf.scalar_mul(self._compute_adanet_gamma(complexity), weight_l1_norm)

[docs]  def build_train_op(self, ensemble, loss, var_list, labels, iteration_step,
                     summary, previous_ensemble):
    del labels, iteration_step, summary, previous_ensemble  # unused
    optimizer = self._optimizer
    if callable(optimizer):
      optimizer = optimizer()
    if optimizer is None:
      return tf.no_op()

    # The AdaNet Estimator is responsible for incrementing the global step.
    return optimizer.minimize(
        loss=loss + ensemble.complexity_regularization, var_list=var_list)
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  Source code for adanet.subnetwork.generator

"""An AdaNet subnetwork definition in Tensorflow using a single graph.

Copyright 2018 The AdaNet Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import abc
import collections

import six


def _validate_nested_persisted_tensors(persisted_tensors):
  """Raises a ValueError when a nested dict is empty in persisted_tensors."""

  for key, entry in persisted_tensors.items():
    if not isinstance(entry, dict):
      continue
    if not entry:
      raise ValueError("Got empty nested dictionary for key: '{}'".format(key))
    _validate_nested_persisted_tensors(entry)


[docs]class TrainOpSpec(
    collections.namedtuple("TrainOpSpec",
                           ["train_op", "chief_hooks", "hooks"])):
  """A data structure for specifying training operations.

  Args:
    train_op: Op for the training step.
    chief_hooks: Iterable of :class:`tf.train.SessionRunHook` objects to run on
      the chief worker during training.
    hooks: Iterable of :class:`tf.train.SessionRunHook` objects to run on all
      workers during training.

  Returns:
    A :class:`adanet.subnetwork.TrainOpSpec` object.
  """

  def __new__(cls, train_op, chief_hooks=None, hooks=None):
    # Make hooks immutable.
    chief_hooks = tuple(chief_hooks) if chief_hooks else ()
    hooks = tuple(hooks) if hooks else ()
    return super(TrainOpSpec, cls).__new__(cls, train_op, chief_hooks, hooks)



[docs]class Subnetwork(
    collections.namedtuple("Subnetwork", [
        "last_layer", "logits", "complexity", "persisted_tensors", "shared",
        "local_init_ops"
    ])):
  # pyformat: disable
  """An AdaNet subnetwork.

  In the AdaNet paper, an :class:`adanet.subnetwork.Subnetwork` is are called a
  *subnetwork*, and indicated by *h*. A collection of weighted subnetworks form
  an AdaNet ensemble.

  Args:
    last_layer: :class:`tf.Tensor` output or dict of string to
      :class:`tf.Tensor` outputs (for multi-head) of the last layer of the
      subnetwork, i.e the layer before the logits layer. When the mixture weight
      type is :class:`MATRIX`, the AdaNet algorithm takes care of computing
      ensemble mixture weights matrices (one per subnetwork) that multiply the
      various last layers of the ensemble's subnetworks, and regularize them
      using their subnetwork's complexity. This field is represented by *h* in
      the AdaNet paper.
    logits: :class:`tf.Tensor` logits or dict of string to :class:`tf.Tensor`
      logits (for multi-head) for training the subnetwork. These logits are not
      used in the ensemble's outputs if the mixture weight type is
      :class:`MATRIX`, instead AdaNet learns its own logits (mixture weights)
      from the subnetwork's `last_layers` with complexity regularization. The
      logits are used in the ensemble only when the mixture weights type is
      :class:`SCALAR` or :class:`VECTOR`. Even though the logits are not used
      in the ensemble in some cases, they should always be supplied as adanet
      uses the logits to train the subnetworks.
    complexity: A scalar :class:`tf.Tensor` representing the complexity of the
      subnetwork's architecture. It is used for choosing the best subnetwork at
      each iteration, and for regularizing the weighted outputs of more complex
      subnetworks.
    persisted_tensors: DEPRECATED. See `shared`. Optional nested dictionary of
      string to :class:`tf.Tensor` to persist across iterations. At the end of
      an iteration, the :class:`tf.Tensor` instances will be available to
      subnetworks in the next iterations, whereas others that are not part of
      the `Subnetwork` will be pruned. This allows later
      :class:`adanet.subnetwork.Subnetwork` instances to dynamically build
      upon arbitrary :class:`tf.Tensors` from previous
      :class:`adanet.subnetwork.Subnetwork` instances.
    shared: Optional Python object(s), primitive(s), or function(s) to share
      with subnetworks within the same iteration or in future iterations.
    local_init_ops: Iterable of :class:`tf.Operation` objects to run to
      initialize local variables.

  Returns:
    A validated :class:`adanet.subnetwork.Subnetwork` object.

  Raises:
    ValueError: If last_layer is None.
    ValueError: If logits is None.
    ValueError: If logits is a dict but last_layer is not.
    ValueError: If last_layer is a dict but logits is not.
    ValueError: If complexity is None.
    ValueError: If persisted_tensors is present but not a dictionary.
    ValueError: If persisted_tensors contains an empty nested dictionary.
  """
  # pyformat: enable

  # Import here to avoid strict BUILD deps check.
  from tensorflow.python.util import deprecation  # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top

  @deprecation.deprecated_args(
      None, "`persisted_tensors` is deprecated, please use `shared` instead.",
      "persisted_tensors")
  def __new__(cls,
              last_layer,
              logits,
              complexity,
              persisted_tensors=None,
              shared=None,
              local_init_ops=None):
    if last_layer is None:
      raise ValueError("last_layer not provided")
    if logits is None:
      raise ValueError("logits not provided")
    if isinstance(logits, dict) and not isinstance(last_layer, dict):
      raise ValueError("if logits is a dict last_layer must also be a dict")
    if isinstance(last_layer, dict) and not isinstance(logits, dict):
      raise ValueError("if last_layer is a dict logits must also be a dict")
    if complexity is None:
      raise ValueError("complexity not provided")
    if persisted_tensors is not None:
      if not isinstance(persisted_tensors, dict):
        raise ValueError("persisted_tensors must be a dict")
      _validate_nested_persisted_tensors(persisted_tensors)
    local_init_ops = tuple(local_init_ops) if local_init_ops else ()
    return super(Subnetwork, cls).__new__(
        cls,
        last_layer=last_layer,
        logits=logits,
        complexity=complexity,
        persisted_tensors=persisted_tensors,
        shared=shared,
        local_init_ops=local_init_ops)



[docs]@six.add_metaclass(abc.ABCMeta)
class Builder(object):
  """Interface for a subnetwork builder.

  Given features, labels, and the best ensemble of subnetworks at iteration
  t-1, a `Builder` creates a `Subnetwork` to add to a candidate
  ensemble at iteration t. These candidate ensembles are evaluated against one
  another at the end of the iteration, and the best one is selected based on its
  complexity-regularized loss.
  """

  @abc.abstractproperty
  def name(self):
    r"""Returns the unique name of this subnetwork within an iteration.

    Returns:
      String name of this subnetwork.
    """

    # TODO: Validate name matches ^[A-Za-z0-9_.\\-/]*$

[docs]  @abc.abstractmethod
  def build_subnetwork(self,
                       features,
                       labels,
                       logits_dimension,
                       training,
                       iteration_step,
                       summary,
                       previous_ensemble=None):
    # pyformat: disable
    """Returns the candidate `Subnetwork` to add to the ensemble.

    This method will be called only once before
    :meth:`build_subnetwork_train_op`. This method should construct the
    candidate subnetwork's graph operations and variables.

    Accessing the global step via :meth:`tf.train.get_or_create_global_step()`
    or :meth:`tf.train.get_global_step()` within this scope will return an
    incrementable iteration step since the beginning of the iteration.

    Args:
      features: Input `dict` of :class:`tf.Tensor` objects.
      labels: Labels :class:`tf.Tensor` or a dictionary of string label name to
        :class:`tf.Tensor` (for multi-head). Can be `None`.
      logits_dimension: Size of the last dimension of the logits
        :class:`tf.Tensor`. Typically, logits have for shape `[batch_size,
        logits_dimension]`.
      training: A python boolean indicating whether the graph is in training
        mode or prediction mode.
      iteration_step: Integer :class:`tf.Tensor` representing the step since the
        beginning of the current iteration, as opposed to the global step.
      summary: An :class:`adanet.Summary` for scoping summaries to individual
        subnetworks in Tensorboard. Using :meth:`tf.summary` within this scope
        will use this :class:`adanet.Summary` under the hood.
      previous_ensemble: The best :class:`adanet.Ensemble` from iteration t-1.
        The created subnetwork will extend the previous ensemble to form the
        :class:`adanet.Ensemble` at iteration t.

    Returns:
      An :class:`adanet.subnetwork.Subnetwork` instance.
    """

    # pyformat: enable

[docs]  @abc.abstractmethod
  def build_subnetwork_train_op(self, subnetwork, loss, var_list, labels,
                                iteration_step, summary, previous_ensemble):
    """Returns an op for training a new subnetwork.

    This method will be called once after :meth:`build_subnetwork`.

    Accessing the global step via :meth:`tf.train.get_or_create_global_step()`
    or
    :meth:`tf.train.get_global_step()` within this scope will return an
    incrementable
    iteration step since the beginning of the iteration.

    Args:
      subnetwork: Newest subnetwork, that is not part of the
        `previous_ensemble`.
      loss: A :class:`tf.Tensor` containing the subnetwork's loss to minimize.
      var_list: List of subnetwork :class:`tf.Variable` parameters to update as
        part of the training operation.
      labels: Labels :class:`tf.Tensor` or a dictionary of string label name to
        :class:`tf.Tensor` (for multi-head).
      iteration_step: Integer :class:`tf.Tensor` representing the step since the
        beginning of the current iteration, as opposed to the global step.
      summary: An :class:`adanet.Summary` for scoping summaries to individual
        subnetworks in Tensorboard. Using `tf.summary` within this scope will
        use this :class:`adanet.Summary` under the hood.
      previous_ensemble: The best `Ensemble` from iteration t-1. The created
        subnetwork will extend the previous ensemble to form the `Ensemble` at
        iteration t. Is None for iteration 0.

    Returns:
      Either a train op or an :class:`adanet.subnetwork.TrainOpSpec`.
    """


[docs]  def build_subnetwork_report(self):
    """Returns a `subnetwork.Report` to materialize and record.

    This method will be called once after :meth:`build_subnetwork`.
    Do NOT depend on variables created in :meth:`build_subnetwork_train_op`,
    because they are not called before :meth:`build_subnetwork_report` is
    called.

    If it returns None, AdaNet records the name and standard eval metrics.
    """

    return None




[docs]@six.add_metaclass(abc.ABCMeta)
class Generator(object):
  """Interface for a candidate subnetwork generator.

  Given the ensemble of subnetworks at iteration t-1, this object is
  responsible for generating the set of candidate subnetworks for iteration t
  that minimize the objective as part of an ensemble.
  """

[docs]  @abc.abstractmethod
  def generate_candidates(self, previous_ensemble, iteration_number,
                          previous_ensemble_reports, all_reports, config):
    # pyformat: disable
    """Generates :class:`adanet.subnetwork.Builder` instances for an iteration.

    NOTE: Every call to :meth:`generate_candidates` must be deterministic for
    the given arguments.

    Args:
      previous_ensemble: The best :class:`adanet.Ensemble` from iteration t-1.
        DEPRECATED. We are transitioning away from the use of previous_ensemble
        in generate_candidates. New Generators should *not* use
        previous_ensemble in their implementation of generate_candidates --
        please only use iteration_number, previous_ensemble_reports and
        all_reports.
      iteration_number: Python integer AdaNet iteration t, starting from 0.
      previous_ensemble_reports: List of
        :class:`adanet.subnetwork.MaterializedReport` instances corresponding to
        the Builders composing :class:`adanet.Ensemble` from iteration t-1. The
        first element in the list corresponds to the Builder added in the
        first iteration. If a :class:`adanet.subnetwork.MaterializedReport` is
        not supplied to the estimator, previous_ensemble_report is `None`.
      all_reports: List of :class:`adanet.subnetwork.MaterializedReport`
        instances. If an :class:`adanet.subnetwork.ReportMaterializer` is not
        supplied to the estimator, `all_reports` is `None`. If
        :class:`adanet.subnetwork.ReportMaterializer` is supplied to the
        estimator and t=0, `all_reports` is an empty List. Otherwise,
        `all_reports` is a sequence of Lists. Each element of the sequence is a
        List containing all the :class:`adanet.subnetwork.MaterializedReport`
        instances in an AdaNet iteration, starting from iteration 0, and
        ending at iteration t-1.
      config: The current :class:`tf.estimator.RunConfig` object to configure
        the runtime settings.

    Returns:
      A list of :class:`adanet.subnetwork.Builder` instances.
    """


    # pyformat: enable


class SimpleGenerator(Generator):
  """Always generates the given :class:`adanet.subnetwork.Builder` instances.

  Args:
    subnetwork_builders: List of :class:`adanet.subnetwork.Builder` instances to
      return at each iteration when `generate_candidates` is called.

  Returns:
    A :class:`adanet.SimpleGenerator` instance.
  """

  def __init__(self, subnetwork_builders):
    self._subnetwork_builders = subnetwork_builders

  def generate_candidates(self, previous_ensemble, iteration_number,
                          previous_ensemble_reports, all_reports):
    return self._subnetwork_builders
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  Source code for adanet.subnetwork.report

"""Container for an `adanet.Subnetwork`'s attributes and metrics.

Copyright 2018 The AdaNet Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections

from adanet import tf_compat
import six
import tensorflow.compat.v1 as tf


[docs]class Report(
    collections.namedtuple("Report", ["hparams", "attributes", "metrics"])):
  # pyformat: disable
  """A container for data to be collected about a :class:`Subnetwork`.

  Args:
    hparams: A dict mapping strings to python strings, ints, bools, or floats.
      It is meant to contain the constants that define the
      :class:`adanet.subnetwork.Builder`, such as dropout, number of layers, or
      initial learning rate.
    attributes: A dict mapping strings to rank 0 Tensors of dtype string, int32,
      or float32. It is meant to contain properties that may or may not change
      over the course of training the :class:`adanet.subnetwork.Subnetwork`,
      such as the number of parameters, the Lipschitz constant, the :math:`L2`
      norm of the weights, or learning rate at materialization time.
    metrics: Dict of metric results keyed by name. The values of the dict are
      the results of calling a metric function, namely a `(metric_tensor,
      update_op)` tuple. `metric_tensor` should be evaluated without any impact
      on state (typically is a pure computation results based on variables.).
      For example, it should not trigger the :code:`update_op` or requires any
      input fetching. This is meant to contain metrics of interest, such as the
      training loss, complexity regularized loss, or standard deviation of the
      last layer outputs.

  Returns:
    A validated :class:`adanet.subnetwork.Report` object.

  Raises:
    ValueError: If validation fails.
  """
  # pyformat: enable

  def __new__(cls, hparams, attributes, metrics):

    def _is_scalar(tensor):
      """Returns True iff tensor is scalar."""
      return tensor.shape.ndims == 0

    def _is_accepted_dtype(tensor):
      """Returns True iff tensor has the dtype we can handle."""
      return tensor.dtype.base_dtype in (tf.bool, tf.int32, tf.float32,
                                         tf.float64, tf.string)

    # Validate hparams
    for key, value in hparams.items():
      if not isinstance(value, (bool, int, float, six.string_types)):
        raise ValueError(
            "hparam '{}' refers to invalid value {}, type {}. type must be "
            "python primitive int, float, bool, or string.".format(
                key, value, type(value)))

    # Validate attributes
    for key, value in attributes.items():
      if not isinstance(value, tf.Tensor):
        raise ValueError("attribute '{}' refers to invalid value: {}, type: {}."
                         "type must be Tensor.".format(key, value, type(value)))

      if not (_is_scalar(value) and _is_accepted_dtype(value)):
        raise ValueError(
            "attribute '{}' refers to invalid tensor {}. Shape: {}".format(
                key, value, value.get_shape()))

    # Validate metrics
    metrics_copy = {}
    for key, value in metrics.items():
      value = tf_compat.metric_op(value)
      if not isinstance(value, tuple):
        raise ValueError(
            "metric '{}' has invalid type {}. Must be a tuple.".format(
                key, type(value)))

      if len(value) < 2:
        raise ValueError(
            "metric tuple '{}' has fewer than 2 elements".format(key))

      if not isinstance(value[0], (tf.Tensor, tf.Variable)):
        raise ValueError(
            "First element of metric tuple '{}' has value {} and type {}. "
            "Must be a Tensor or Variable.".format(key, value[0],
                                                   type(value[0])))

      if not _is_accepted_dtype(value[0]):
        raise ValueError(
            "First element of metric '{}' refers to Tensor of the wrong "
            "dtype {}. Must be one of tf.bool, tf.int32, tf.float32, "
            "tf.float64 or tf.string.".format(key, value[0].dtype))

      if not _is_scalar(value[0]):
        tf.logging.warn(
            "First element of metric '{}' refers to Tensor of rank > 0. "
            "AdaNet is currently unable to store metrics of rank > 0 -- this "
            "metric will be dropped from the report. "
            "value: {}".format(key, value[0]))
        continue

      if not isinstance(value[1], (tf.Tensor, tf.Operation, tf.Variable)):
        raise ValueError(
            "Second element of metric tuple '{}' has value {} and type {}. "
            "Must be a Tensor, Operation, or Variable.".format(
                key, value[1], type(value[1])))

      metrics_copy[key] = value

    return super(Report, cls).__new__(
        cls, hparams=hparams, attributes=attributes, metrics=metrics_copy)



[docs]class MaterializedReport(
    collections.namedtuple("MaterializedReport", [
        "iteration_number", "name", "hparams", "attributes", "metrics",
        "included_in_final_ensemble"
    ])):
  # pyformat: disable
  """Data collected about a :class:`adanet.subnetwork.Subnetwork`.

  Args:
    iteration_number: A python integer for the AdaNet iteration number, starting
      from 0.
    name: A string, which is either the name of the corresponding Builder, or
      "previous_ensemble" if it refers to the previous_ensemble.
    hparams: A dict mapping strings to python strings, ints, or floats. These
      are constants passed from the author of the
      :class:`adanet.subnetwork.Builder` that was used to construct this
      :class:`adanet.subnetwork.Subnetwork`. It is meant to contain the
      arguments that defined the :class:`adanet.subnetwork.Builder`, such as
      dropout, number of layers, or initial learning rate.
    attributes: A dict mapping strings to python strings, ints, bools, or
      floats. These are python primitives that come from materialized Tensors;
      these Tensors were defined by the author of the
      :class:`adanet.subnetwork.Builder` that was used
      to construct this :class:`adanet.subnetwork.Subnetwork`. It is meant to
      contain properties that may or may not change over the course of
      training the :class:`adanet.subnetwork.Subnetwork`, such as the number of
      parameters, the Lipschitz constant, or the :math:`L2` norm of the weights.
    metrics: A dict mapping strings to python strings, ints, or floats. These
      are python primitives that come from metrics that were evaluated on the
      trained :class:`adanet.subnetwork.Subnetwork` over some dataset; these
      metrics were defined by the author of the
      :class:`adanet.subnetwork.Builder` that was used to construct this
      :class:`adanet.subnetwork.Subnetwork`. It is meant to contain
      performance metrics or measures that could predict generalization, such
      as the training loss, complexity regularized loss, or standard deviation
      of the last layer outputs.
    included_in_final_ensemble: A boolean denoting whether the associated
      :class:`adanet.subnetwork.Subnetwork` was included in the ensemble at the
      end of the AdaNet iteration.

  Returns:
    An :class:`adanet.subnetwork.MaterializedReport` object.
  """
  # pyformat: enable

  def __new__(cls,
              iteration_number,
              name,
              hparams,
              attributes,
              metrics,
              included_in_final_ensemble=False):

    return super(MaterializedReport, cls).__new__(
        cls,
        iteration_number=iteration_number,
        name=name,
        hparams=hparams,
        attributes=attributes,
        metrics=metrics,
        included_in_final_ensemble=included_in_final_ensemble)
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  Source code for tensorflow_estimator.python.estimator.estimator

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Base Estimator class."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import copy
import os
import tempfile

import numpy as np
import six
import tensorflow as tf
from google.protobuf import message
from tensorflow.core.framework import summary_pb2
from tensorflow.python.distribute import estimator_training as distribute_coordinator_training
from tensorflow.python.eager import context
from tensorflow.python.eager import monitoring
from tensorflow.python.framework import ops
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.profiler import trace
from tensorflow.python.saved_model import utils_impl as saved_model_utils
from tensorflow.python.summary import summary
from tensorflow.python.training import basic_session_run_hooks
from tensorflow.python.training import checkpoint_management
from tensorflow.python.training import device_setter
from tensorflow.python.training import evaluation
from tensorflow.python.training import training
from tensorflow.python.training import training_util
from tensorflow.python.training.tracking import graph_view
from tensorflow.python.training.tracking import util as trackable_util
from tensorflow.python.util import compat_internal
from tensorflow.python.util import deprecation
from tensorflow.python.util import function_utils
from tensorflow.python.util import tf_contextlib
from tensorflow.python.util.tf_export import estimator_export
from tensorflow_estimator.python.estimator import model_fn as model_fn_lib
from tensorflow_estimator.python.estimator import run_config
from tensorflow_estimator.python.estimator import util as estimator_util
from tensorflow_estimator.python.estimator.export import export_lib
from tensorflow_estimator.python.estimator.mode_keys import ModeKeys

_VALID_MODEL_FN_ARGS = set(
    ['features', 'labels', 'mode', 'params', 'self', 'config'])
_estimator_api_gauge = monitoring.BoolGauge('/tensorflow/api/estimator',
                                            'estimator api usage', 'method')

_canned_estimator_api_gauge = monitoring.StringGauge(
    '/tensorflow/api/estimator/canned_estimator',
    'Gauge to track the type of canned estimator used', 'ClassType')


@estimator_export(v1=['estimator.Estimator'])
class Estimator(object):
  """Estimator class to train and evaluate TensorFlow models.

  The `Estimator` object wraps a model which is specified by a `model_fn`,
  which, given inputs and a number of other parameters, returns the ops
  necessary to perform training, evaluation, or predictions.

  All outputs (checkpoints, event files, etc.) are written to `model_dir`, or a
  subdirectory thereof. If `model_dir` is not set, a temporary directory is
  used.

  The `config` argument can be passed `tf.estimator.RunConfig` object containing
  information about the execution environment. It is passed on to the
  `model_fn`, if the `model_fn` has a parameter named "config" (and input
  functions in the same manner). If the `config` parameter is not passed, it is
  instantiated by the `Estimator`. Not passing config means that defaults useful
  for local execution are used. `Estimator` makes config available to the model
  (for instance, to allow specialization based on the number of workers
  available), and also uses some of its fields to control internals, especially
  regarding checkpointing.

  The `params` argument contains hyperparameters. It is passed to the
  `model_fn`, if the `model_fn` has a parameter named "params", and to the input
  functions in the same manner. `Estimator` only passes params along, it does
  not inspect it. The structure of `params` is therefore entirely up to the
  developer.

  None of `Estimator`'s methods can be overridden in subclasses (its
  constructor enforces this). Subclasses should use `model_fn` to configure
  the base class, and may add methods implementing specialized functionality.

  See [estimators](https://tensorflow.org/guide/estimator) for more
  information.

  To warm-start an `Estimator`:

  ```python
  estimator = tf.estimator.DNNClassifier(
      feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb],
      hidden_units=[1024, 512, 256],
      warm_start_from="/path/to/checkpoint/dir")
  ```

  For more details on warm-start configuration, see
  `tf.estimator.WarmStartSettings`.

  @compatibility(eager)
  Calling methods of `Estimator` will work while eager execution is enabled.
  However, the `model_fn` and `input_fn` is not executed eagerly, `Estimator`
  will switch to graph mode before calling all user-provided functions (incl.
  hooks), so their code has to be compatible with graph mode execution. Note
  that `input_fn` code using `tf.data` generally works in both graph and eager
  modes.
  @end_compatibility
  """

  def __init__(self,
               model_fn,
               model_dir=None,
               config=None,
               params=None,
               warm_start_from=None):
    """Constructs an `Estimator` instance.



    Args:
      model_fn: Model function. Follows the signature:
        * `features` -- This is the first item returned from the `input_fn`
        passed to `train`, `evaluate`, and `predict`. This should be a
        single `tf.Tensor` or `dict` of same.
        * `labels` -- This is the second item returned from the `input_fn`
        passed to `train`, `evaluate`, and `predict`. This should be a
        single `tf.Tensor` or `dict` of same (for multi-head models). If
        mode is `tf.estimator.ModeKeys.PREDICT`, `labels=None` will be
        passed. If the `model_fn`'s signature does not accept `mode`, the
        `model_fn` must still be able to handle `labels=None`.
        * `mode` -- Optional. Specifies if this is training, evaluation or
        prediction. See `tf.estimator.ModeKeys`.
        `params` -- Optional `dict` of hyperparameters.  Will receive what is
        passed to Estimator in `params` parameter. This allows to configure
        Estimators from hyper parameter tuning.
        * `config` -- Optional `estimator.RunConfig` object. Will receive what
        is passed to Estimator as its `config` parameter, or a default
        value. Allows setting up things in your `model_fn` based on
        configuration such as `num_ps_replicas`, or `model_dir`.
        * Returns -- `tf.estimator.EstimatorSpec`
      model_dir: Directory to save model parameters, graph and etc. This can
        also be used to load checkpoints from the directory into an estimator to
        continue training a previously saved model. If `PathLike` object, the
        path will be resolved. If `None`, the model_dir in `config` will be used
        if set. If both are set, they must be same. If both are `None`, a
        temporary directory will be used.
      config: `estimator.RunConfig` configuration object.
      params: `dict` of hyper parameters that will be passed into `model_fn`.
        Keys are names of parameters, values are basic python types.
      warm_start_from: Optional string filepath to a checkpoint or SavedModel to
        warm-start from, or a `tf.estimator.WarmStartSettings` object to fully
        configure warm-starting.  If None, only TRAINABLE variables are
        warm-started.  If the string filepath is provided instead of a
        `tf.estimator.WarmStartSettings`, then all variables are warm-started,
        and it is assumed that vocabularies and `tf.Tensor` names are unchanged.

    Raises:
      ValueError: parameters of `model_fn` don't match `params`.
      ValueError: if this is called via a subclass and if that class overrides
        a member of `Estimator`.
    """
    _estimator_api_gauge.get_cell('init').set(True)
    # We do not endorse Estimator child classes to override methods in
    # Estimator, other than a select few. You're on your own if you cleverly
    # override the method "_assert_members_are_not_overridden".
    self.__class__._assert_members_are_not_overridden(self)  # pylint: disable=protected-access

    self._config = maybe_overwrite_model_dir_and_session_config(
        config, model_dir)

    # The distribute field contains an instance of tf.distribute.Strategy.
    self._train_distribution = self._config.train_distribute
    self._eval_distribution = self._config.eval_distribute
    # Model directory.
    self._model_dir = self._config.model_dir
    self._session_config = self._config.session_config
    tf.compat.v1.logging.info('Using config: %s', str(vars(self._config)))

    self._device_fn = (
        self._config.device_fn or _get_replica_device_setter(self._config))

    if model_fn is None:
      raise ValueError('model_fn must be provided to Estimator.')
    model_fn_lib.verify_model_fn_args(model_fn, params)
    self._model_fn = model_fn
    self._params = copy.deepcopy(params or {})

    # pylint: disable=protected-access
    self._warm_start_settings = _get_default_warm_start_settings(
        warm_start_from)
    # pylint: enable=protected-access

  @property
  def model_dir(self):
    return self._model_dir

  @property
  def config(self):
    return copy.deepcopy(self._config)

  @property
  def params(self):
    return copy.deepcopy(self._params)

  @property
  def model_fn(self):
    """Returns the `model_fn` which is bound to `self.params`.

    Returns:
      The `model_fn` with following signature:
        `def model_fn(features, labels, mode, config)`
    """

    def public_model_fn(features, labels, mode, config):
      return self._call_model_fn(features, labels, mode, config)

    return public_model_fn

  # TODO(ispir): support a list of names
[docs]  def get_variable_value(self, name):
    """Returns value of the variable given by name.

    Args:
      name: string or a list of string, name of the tensor.

    Returns:
      Numpy array - value of the tensor.

    Raises:
      ValueError: If the `Estimator` has not produced a checkpoint yet.
    """
    _check_checkpoint_available(self.model_dir)
    with context.graph_mode():
      return tf.train.load_variable(self.model_dir, name)


[docs]  def get_variable_names(self):
    """Returns list of all variable names in this model.

    Returns:
      List of names.

    Raises:
      ValueError: If the `Estimator` has not produced a checkpoint yet.
    """
    _check_checkpoint_available(self.model_dir)
    with context.graph_mode():
      return [name for name, _ in tf.train.list_variables(self.model_dir)]


[docs]  def latest_checkpoint(self):
    """Finds the filename of the latest saved checkpoint file in `model_dir`.

    Returns:
      The full path to the latest checkpoint or `None` if no checkpoint was
      found.
    """
    with context.graph_mode():
      return checkpoint_management.latest_checkpoint(self.model_dir)


  def train(self,
            input_fn,
            hooks=None,
            steps=None,
            max_steps=None,
            saving_listeners=None):
    """Trains a model given training data `input_fn`.

    Args:
      input_fn: A function that provides input data for training as minibatches.
        See [Premade Estimators](
        https://tensorflow.org/guide/premade_estimators#create_input_functions)
          for more information. The function should construct and return one of
        the following:
          * A `tf.data.Dataset` object: Outputs of `Dataset` object must be a
            tuple `(features, labels)` with same constraints as below.
          * A tuple `(features, labels)`: Where `features` is a `tf.Tensor` or a
            dictionary of string feature name to `Tensor` and `labels` is a
            `Tensor` or a dictionary of string label name to `Tensor`. Both
            `features` and `labels` are consumed by `model_fn`. They should
            satisfy the expectation of `model_fn` from inputs.
      hooks: List of `tf.train.SessionRunHook` subclass instances. Used for
        callbacks inside the training loop.
      steps: Number of steps for which to train the model. If `None`, train
        forever or train until `input_fn` generates the `tf.errors.OutOfRange`
        error or `StopIteration` exception. `steps` works incrementally. If you
        call two times `train(steps=10)` then training occurs in total 20 steps.
        If `OutOfRange` or `StopIteration` occurs in the middle, training stops
        before 20 steps. If you don't want to have incremental behavior please
        set `max_steps` instead. If set, `max_steps` must be `None`.
      max_steps: Number of total steps for which to train model. If `None`,
        train forever or train until `input_fn` generates the
        `tf.errors.OutOfRange` error or `StopIteration` exception. If set,
        `steps` must be `None`. If `OutOfRange` or `StopIteration` occurs in the
        middle, training stops before `max_steps` steps. Two calls to
        `train(steps=100)` means 200 training iterations. On the other hand, two
        calls to `train(max_steps=100)` means that the second call will not do
        any iteration since first call did all 100 steps.
      saving_listeners: list of `CheckpointSaverListener` objects. Used for
        callbacks that run immediately before or after checkpoint savings.

    Returns:
      `self`, for chaining.

    Raises:
      ValueError: If both `steps` and `max_steps` are not `None`.
      ValueError: If either `steps` or `max_steps <= 0`.
    """
    _estimator_api_gauge.get_cell('train').set(True)
    if self.config.task_type in (run_config.TaskType.EVALUATOR,
                                 run_config.TaskType.PS):
      raise ValueError(
          'Train has been called wrong configuration. Please use '
          'tf.estimator.train_and_evaluate which calls proper API according '
          'to given configuration. Current configuration: {}.'.format(
              self.config))

    with context.graph_mode():
      if (steps is not None) and (max_steps is not None):
        raise ValueError('Can not provide both steps and max_steps.')
      if steps is not None and steps <= 0:
        raise ValueError('Must specify steps > 0, given: {}'.format(steps))
      if max_steps is not None and max_steps <= 0:
        raise ValueError(
            'Must specify max_steps > 0, given: {}'.format(max_steps))

      if max_steps is not None:
        start_step = _load_global_step_from_checkpoint_dir(self._model_dir)
        if max_steps <= start_step:
          logging.info('Skipping training since max_steps has already saved.')
          return self

      hooks = _check_hooks_type(hooks)
      hooks.extend(self._convert_train_steps_to_hooks(steps, max_steps))

      saving_listeners = _check_listeners_type(saving_listeners)
      loss = self._train_model(input_fn, hooks, saving_listeners)
      logging.info('Loss for final step: %s.', loss)
      return self

  def _convert_train_steps_to_hooks(self, steps, max_steps):
    """Create hooks to run correct number of steps in training.

    Args:
      steps: number of steps to run during training.
      max_steps: maximum number of steps to be run during training. It'll be the
        maximum number of steps the model will train to after restoring from
        checkpoint even across multiple estimator.train calls.

    Returns:
      List of hooks to be passed to the estimator.
    """
    if steps is not None or max_steps is not None:
      if self._train_distribution:
        steps_per_run = getattr(self._train_distribution.extended,
                                'steps_per_run', 1)
        if steps_per_run > 1:
          return [
              basic_session_run_hooks._MultiStepStopAtStepHook(  # pylint: disable=protected-access
                  steps, max_steps, steps_per_run)
          ]
      return [tf.compat.v1.train.StopAtStepHook(steps, max_steps)]
    else:
      return []

[docs]  def eval_dir(self, name=None):
    """Shows the directory name where evaluation metrics are dumped.

    Args:
      name: Name of the evaluation if user needs to run multiple evaluations on
        different data sets, such as on training data vs test data. Metrics for
        different evaluations are saved in separate folders, and appear
        separately in tensorboard.

    Returns:
      A string which is the path of directory contains evaluation metrics.
    """
    return os.path.join(self._model_dir, 'eval' if not name else 'eval_' + name)


  def evaluate(self,
               input_fn,
               steps=None,
               hooks=None,
               checkpoint_path=None,
               name=None):
    """Evaluates the model given evaluation data `input_fn`.

    For each step, calls `input_fn`, which returns one batch of data.
    Evaluates until:
    - `steps` batches are processed, or
    - `input_fn` raises an end-of-input exception (`tf.errors.OutOfRangeError`
    or `StopIteration`).

    Args:
      input_fn: A function that constructs the input data for evaluation. See
        [Premade Estimators](
        https://tensorflow.org/guide/premade_estimators#create_input_functions)
        for more information. The function should construct and return one of
        the following:
        * A `tf.data.Dataset` object: Outputs of `Dataset` object must be a
          tuple `(features, labels)` with same constraints as below.
        * A tuple `(features, labels)`: Where `features` is a `tf.Tensor` or a
          dictionary of string feature name to `Tensor` and `labels` is a
          `Tensor` or a dictionary of string label name to `Tensor`. Both
          `features` and `labels` are consumed by `model_fn`. They should
          satisfy the expectation of `model_fn` from inputs.
      steps: Number of steps for which to evaluate model. If `None`, evaluates
        until `input_fn` raises an end-of-input exception.
      hooks: List of `tf.train.SessionRunHook` subclass instances. Used for
        callbacks inside the evaluation call.
      checkpoint_path: Path of a specific checkpoint to evaluate. If `None`, the
        latest checkpoint in `model_dir` is used.  If there are no checkpoints
        in `model_dir`, evaluation is run with newly initialized `Variables`
        instead of ones restored from checkpoint.
      name: Name of the evaluation if user needs to run multiple evaluations on
        different data sets, such as on training data vs test data. Metrics for
        different evaluations are saved in separate folders, and appear
        separately in tensorboard.

    Returns:
      A dict containing the evaluation metrics specified in `model_fn` keyed by
      name, as well as an entry `global_step` which contains the value of the
      global step for which this evaluation was performed. For canned
      estimators, the dict contains the `loss` (mean loss per mini-batch) and
      the `average_loss` (mean loss per sample). Canned classifiers also return
      the `accuracy`. Canned regressors also return the `label/mean` and the
      `prediction/mean`.

    Raises:
      ValueError: If `steps <= 0`.
    """
    _estimator_api_gauge.get_cell('evaluate').set(True)
    # pylint: disable=protected-access
    if (self._eval_distribution and
        hasattr(self._config, '_distribute_coordinator_mode') and
        self._config._distribute_coordinator_mode):
      return distribute_coordinator_training.estimator_evaluate(
          self,
          lambda est, s, eval_hooks: est._actual_eval(  # pylint: disable=g-long-lambda
              input_fn,
              strategy=s,
              steps=steps,
              hooks=eval_hooks,
              checkpoint_path=checkpoint_path,
              name=name),
          hooks)
    # pylint: enable=protected-access
    else:
      return self._actual_eval(
          input_fn,
          strategy=self._eval_distribution,
          steps=steps,
          hooks=hooks,
          checkpoint_path=checkpoint_path,
          name=name)

  def _actual_eval(self,
                   input_fn,
                   strategy=None,
                   steps=None,
                   hooks=None,
                   checkpoint_path=None,
                   name=None):
    """The method that does evaluation actually."""
    with context.graph_mode():
      hooks = _check_hooks_type(hooks)
      hooks.extend(self._convert_eval_steps_to_hooks(steps))

      # Check that model has been trained (if nothing has been set explicitly).
      if not checkpoint_path:
        latest_path = checkpoint_management.latest_checkpoint(self._model_dir)
        if not latest_path:
          tf.compat.v1.logging.info(
              'Could not find trained model in model_dir: {}, running '
              'initialization to evaluate.'.format(self._model_dir))
        checkpoint_path = latest_path

      def _evaluate():
        (scaffold, update_op, eval_dict, all_hooks) = (
            self._evaluate_build_graph(input_fn, hooks, checkpoint_path))
        return self._evaluate_run(
            checkpoint_path=checkpoint_path,
            scaffold=scaffold,
            update_op=update_op,
            eval_dict=eval_dict,
            all_hooks=all_hooks,
            output_dir=self.eval_dir(name))

      with tf.Graph().as_default():
        if strategy:
          # We want to create the iterations variable outside the distribution
          # scope as that is just stored on the host and mainly used to drive
          # the loop and doesn't need to be a Mirrored/Device variable.
          training.get_or_create_steps_per_run_variable()
          with strategy.scope():
            return _evaluate()
        else:
          return _evaluate()

  def _convert_eval_steps_to_hooks(self, steps):
    """Create hooks to run correct number of steps in evaluation.

    Args:
      steps: number of steps to run during evaluation.

    Raises:
      ValueError: if steps is less than or equal to zero.

    Returns:
      List of hooks to be passed to the estimator.
    """
    if steps is None:
      return []

    if steps <= 0:
      raise ValueError('Must specify steps > 0, given: {}'.format(steps))

    # The hooks are declared as private in evaluation.py discourage the use
    # by other libraries or open source users. This should be the only usage
    # of the estimator evaluation hooks.
    if self._eval_distribution:
      steps_per_run = getattr(self._eval_distribution.extended, 'steps_per_run',
                              1)
      if steps_per_run > 1:
        return [
            evaluation._MultiStepStopAfterNEvalsHook(  # pylint: disable=protected-access
                num_evals=steps,
                steps_per_run=steps_per_run)
        ]
    return [evaluation._StopAfterNEvalsHook(num_evals=steps)]  # pylint: disable=protected-access

  def predict(self,
              input_fn,
              predict_keys=None,
              hooks=None,
              checkpoint_path=None,
              yield_single_examples=True):
    """Yields predictions for given features.

    Please note that interleaving two predict outputs does not work. See:
    [issue/20506](
    https://github.com/tensorflow/tensorflow/issues/20506#issuecomment-422208517)

    Args:
      input_fn: A function that constructs the features. Prediction continues
        until `input_fn` raises an end-of-input exception
        (`tf.errors.OutOfRangeError` or `StopIteration`). See [Premade
        Estimators](
        https://tensorflow.org/guide/premade_estimators#create_input_functions)
        for more information. The function should construct and return one of
        the following:
        * `tf.data.Dataset` object -- Outputs of `Dataset` object must have
          same constraints as below.
        * features -- A `tf.Tensor` or a dictionary of string feature name to
          `Tensor`. features are consumed by `model_fn`. They should satisfy
          the expectation of `model_fn` from inputs.
        * A tuple, in which case
          the first item is extracted as features.
      predict_keys: list of `str`, name of the keys to predict. It is used if
        the `tf.estimator.EstimatorSpec.predictions` is a `dict`. If
        `predict_keys` is used then rest of the predictions will be filtered
        from the dictionary. If `None`, returns all.
      hooks: List of `tf.train.SessionRunHook` subclass instances. Used for
        callbacks inside the prediction call.
      checkpoint_path: Path of a specific checkpoint to predict. If `None`, the
        latest checkpoint in `model_dir` is used.  If there are no checkpoints
        in `model_dir`, prediction is run with newly initialized `Variables`
        instead of ones restored from checkpoint.
      yield_single_examples: If `False`, yields the whole batch as returned by
        the `model_fn` instead of decomposing the batch into individual
        elements. This is useful if `model_fn` returns some tensors whose first
        dimension is not equal to the batch size.

    Yields:
      Evaluated values of `predictions` tensors.

    Raises:
      ValueError: If batch length of predictions is not the same and
        `yield_single_examples` is `True`.
      ValueError: If there is a conflict between `predict_keys` and
        `predictions`. For example if `predict_keys` is not `None` but
        `tf.estimator.EstimatorSpec.predictions` is not a `dict`.
    """
    _estimator_api_gauge.get_cell('predict').set(True)
    with context.graph_mode():
      hooks = _check_hooks_type(hooks)
      # Check that model has been trained.
      if not checkpoint_path:
        checkpoint_path = checkpoint_management.latest_checkpoint(
            self._model_dir)
      if not checkpoint_path:
        tf.compat.v1.logging.info(
            'Could not find trained model in model_dir: {}, running '
            'initialization to predict.'.format(self._model_dir))
      with tf.Graph().as_default() as g:
        tf.compat.v1.random.set_random_seed(self._config.tf_random_seed)
        self._create_and_assert_global_step(g)
        features, input_hooks = self._get_features_from_input_fn(
            input_fn, ModeKeys.PREDICT)
        estimator_spec = self._call_model_fn(features, None, ModeKeys.PREDICT,
                                             self.config)

        # Call to warm_start has to be after model_fn is called.
        self._maybe_warm_start(checkpoint_path)

        predictions = self._extract_keys(estimator_spec.predictions,
                                         predict_keys)
        all_hooks = list(input_hooks)
        all_hooks.extend(hooks)
        all_hooks.extend(list(estimator_spec.prediction_hooks or []))
        with tf.compat.v1.train.MonitoredSession(
            session_creator=tf.compat.v1.train.ChiefSessionCreator(
                checkpoint_filename_with_path=checkpoint_path,
                master=self._config.master,
                scaffold=estimator_spec.scaffold,
                config=self._session_config),
            hooks=all_hooks) as mon_sess:
          while not mon_sess.should_stop():
            preds_evaluated = mon_sess.run(predictions)
            if not yield_single_examples:
              yield preds_evaluated
            elif not isinstance(predictions, dict):
              for pred in preds_evaluated:
                yield pred
            else:
              for i in range(self._extract_batch_length(preds_evaluated)):
                yield {
                    key: value[i]
                    for key, value in six.iteritems(preds_evaluated)
                }

  def _assert_members_are_not_overridden(self):
    """Asserts members of `Estimator` are not overridden."""
    _assert_members_are_not_overridden(Estimator, self)

  def export_saved_model(self,
                         export_dir_base,
                         serving_input_receiver_fn,
                         assets_extra=None,
                         as_text=False,
                         checkpoint_path=None,
                         experimental_mode=ModeKeys.PREDICT):
    # pylint: disable=line-too-long
    """Exports inference graph as a `SavedModel` into the given dir.

    For a detailed guide on SavedModel, see
    [Using the SavedModel format]
    (https://tensorflow.org/guide/saved_model#savedmodels_from_estimators).

    This method builds a new graph by first calling the
    `serving_input_receiver_fn` to obtain feature `Tensor`s, and then calling
    this `Estimator`'s `model_fn` to generate the model graph based on those
    features. It restores the given checkpoint (or, lacking that, the most
    recent checkpoint) into this graph in a fresh session.  Finally it creates
    a timestamped export directory below the given `export_dir_base`, and writes
    a `SavedModel` into it containing a single `tf.MetaGraphDef` saved from this
    session.

    The exported `MetaGraphDef` will provide one `SignatureDef` for each
    element of the `export_outputs` dict returned from the `model_fn`, named
    using the same keys.  One of these keys is always
    `tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY`,
    indicating which signature will be served when a serving request does not
    specify one. For each signature, the outputs are provided by the
    corresponding `tf.estimator.export.ExportOutput`s, and the inputs are always
    the input receivers provided by the `serving_input_receiver_fn`.

    Extra assets may be written into the `SavedModel` via the `assets_extra`
    argument.  This should be a dict, where each key gives a destination path
    (including the filename) relative to the assets.extra directory.  The
    corresponding value gives the full path of the source file to be copied.
    For example, the simple case of copying a single file without renaming it
    is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`.

    The experimental_mode parameter can be used to export a single
    train/eval/predict graph as a `SavedModel`.
    See `experimental_export_all_saved_models` for full docs.

    Args:
      export_dir_base: A string containing a directory in which to create
        timestamped subdirectories containing exported `SavedModel`s.
      serving_input_receiver_fn: A function that takes no argument and returns a
        `tf.estimator.export.ServingInputReceiver` or
        `tf.estimator.export.TensorServingInputReceiver`.
      assets_extra: A dict specifying how to populate the assets.extra directory
        within the exported `SavedModel`, or `None` if no extra assets are
        needed.
      as_text: whether to write the `SavedModel` proto in text format.
      checkpoint_path: The checkpoint path to export.  If `None` (the default),
        the most recent checkpoint found within the model directory is chosen.
      experimental_mode: `tf.estimator.ModeKeys` value indicating with mode will
        be exported. Note that this feature is experimental.

    Returns:
      The path to the exported directory as a bytes object.

    Raises:
      ValueError: if no `serving_input_receiver_fn` is provided, no
      `export_outputs` are provided, or no checkpoint can be found.
    """
    # pylint: enable=line-too-long
    if not serving_input_receiver_fn:
      raise ValueError('An input_receiver_fn must be defined.')

    input_receiver_fn_map = {experimental_mode: serving_input_receiver_fn}

    return self._export_all_saved_models(
        export_dir_base,
        input_receiver_fn_map,
        assets_extra=assets_extra,
        as_text=as_text,
        checkpoint_path=checkpoint_path,
        strip_default_attrs=True)

  def experimental_export_all_saved_models(self,
                                           export_dir_base,
                                           input_receiver_fn_map,
                                           assets_extra=None,
                                           as_text=False,
                                           checkpoint_path=None):
    """Exports a `SavedModel` with `tf.MetaGraphDefs` for each requested mode.

    For each mode passed in via the `input_receiver_fn_map`,
    this method builds a new graph by calling the `input_receiver_fn` to obtain
    feature and label `Tensor`s. Next, this method calls the `Estimator`'s
    `model_fn` in the passed mode to generate the model graph based on
    those features and labels, and restores the given checkpoint
    (or, lacking that, the most recent checkpoint) into the graph.
    Only one of the modes is used for saving variables to the `SavedModel`
    (order of preference: `tf.estimator.ModeKeys.TRAIN`,
    `tf.estimator.ModeKeys.EVAL`, then
    `tf.estimator.ModeKeys.PREDICT`), such that up to three
    `tf.MetaGraphDefs` are saved with a single set of variables in a single
    `SavedModel` directory.

    For the variables and `tf.MetaGraphDefs`, a timestamped export directory
    below `export_dir_base`, and writes a `SavedModel` into it containing the
    `tf.MetaGraphDef` for the given mode and its associated signatures.

    For prediction, the exported `MetaGraphDef` will provide one `SignatureDef`
    for each element of the `export_outputs` dict returned from the `model_fn`,
    named using the same keys.  One of these keys is always
    `tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY`,
    indicating which signature will be served when a serving request does not
    specify one. For each signature, the outputs are provided by the
    corresponding `tf.estimator.export.ExportOutput`s, and the inputs are always
    the input receivers provided by the `serving_input_receiver_fn`.

    For training and evaluation, the `train_op` is stored in an extra
    collection, and loss, metrics, and predictions are included in a
    `SignatureDef` for the mode in question.

    Extra assets may be written into the `SavedModel` via the `assets_extra`
    argument.  This should be a dict, where each key gives a destination path
    (including the filename) relative to the assets.extra directory.  The
    corresponding value gives the full path of the source file to be copied.
    For example, the simple case of copying a single file without renaming it
    is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`.

    Args:
      export_dir_base: A string containing a directory in which to create
        timestamped subdirectories containing exported `SavedModel`s.
      input_receiver_fn_map: dict of `tf.estimator.ModeKeys` to
        `input_receiver_fn` mappings, where the `input_receiver_fn` is a
        function that takes no arguments and returns the appropriate subclass of
        `InputReceiver`.
      assets_extra: A dict specifying how to populate the assets.extra directory
        within the exported `SavedModel`, or `None` if no extra assets are
        needed.
      as_text: whether to write the `SavedModel` proto in text format.
      checkpoint_path: The checkpoint path to export.  If `None` (the default),
        the most recent checkpoint found within the model directory is chosen.

    Returns:
      The path to the exported directory as a bytes object.

    Raises:
      ValueError: if any `input_receiver_fn` is `None`, no `export_outputs`
        are provided, or no checkpoint can be found.
    """
    return self._export_all_saved_models(
        export_dir_base,
        input_receiver_fn_map,
        assets_extra=assets_extra,
        as_text=as_text,
        checkpoint_path=checkpoint_path,
        strip_default_attrs=True)

  def _export_all_saved_models(self,
                               export_dir_base,
                               input_receiver_fn_map,
                               assets_extra=None,
                               as_text=False,
                               checkpoint_path=None,
                               strip_default_attrs=True):
    """Exports multiple modes in the model function to a SavedModel."""
    # TODO(b/65561022): Consider allowing multiple input_receiver_fns per mode.
    with context.graph_mode():
      if not checkpoint_path:
        # Locate the latest checkpoint
        checkpoint_path = self.latest_checkpoint()
      if not checkpoint_path:
        if self._warm_start_settings:
          checkpoint_path = self._warm_start_settings.ckpt_to_initialize_from
          if tf.compat.v1.gfile.IsDirectory(checkpoint_path):
            checkpoint_path = tf.train.latest_checkpoint(checkpoint_path)
        else:
          raise ValueError("Couldn't find trained model at {}.".format(
              self._model_dir))

      export_dir = export_lib.get_timestamped_export_dir(export_dir_base)
      temp_export_dir = export_lib.get_temp_export_dir(export_dir)

      builder = tf.compat.v1.saved_model.Builder(temp_export_dir)

      save_variables = True
      # Note that the order in which we run here matters, as the first
      # mode we pass through will be used to save the variables. We run TRAIN
      # first, as that is also the mode used for checkpoints, and therefore
      # we are not likely to have vars in PREDICT that are not in the checkpoint
      # created by TRAIN.
      if input_receiver_fn_map.get(ModeKeys.TRAIN):
        self._add_meta_graph_for_mode(
            builder,
            input_receiver_fn_map,
            checkpoint_path,
            save_variables,
            mode=ModeKeys.TRAIN,
            strip_default_attrs=strip_default_attrs)
        save_variables = False
      if input_receiver_fn_map.get(ModeKeys.EVAL):
        self._add_meta_graph_for_mode(
            builder,
            input_receiver_fn_map,
            checkpoint_path,
            save_variables,
            mode=ModeKeys.EVAL,
            strip_default_attrs=strip_default_attrs)
        save_variables = False
      if input_receiver_fn_map.get(ModeKeys.PREDICT):
        self._add_meta_graph_for_mode(
            builder,
            input_receiver_fn_map,
            checkpoint_path,
            save_variables,
            mode=ModeKeys.PREDICT,
            strip_default_attrs=strip_default_attrs)
        save_variables = False

      if save_variables:
        raise ValueError('No valid modes for exporting found. Got {}.'.format(
            input_receiver_fn_map.keys()))

      builder.save(as_text)

      # Add the extra assets
      if assets_extra:
        assets_extra_path = os.path.join(
            tf.compat.as_bytes(temp_export_dir),
            tf.compat.as_bytes('assets.extra'))
        for dest_relative, source in assets_extra.items():
          dest_absolute = os.path.join(
              tf.compat.as_bytes(assets_extra_path),
              tf.compat.as_bytes(dest_relative))
          dest_path = os.path.dirname(dest_absolute)
          tf.compat.v1.gfile.MakeDirs(dest_path)
          tf.compat.v1.gfile.Copy(source, dest_absolute)

      tf.compat.v1.gfile.Rename(temp_export_dir, export_dir)
      return export_dir

  def _add_meta_graph_for_mode(self,
                               builder,
                               input_receiver_fn_map,
                               checkpoint_path,
                               save_variables=True,
                               mode=ModeKeys.PREDICT,
                               export_tags=None,
                               check_variables=True,
                               strip_default_attrs=True):
    """Loads variables and adds them along with a `tf.MetaGraphDef` for saving.

    Args:
      builder: instance of `tf.saved_modle.builder.SavedModelBuilder` that will
        be used for saving.
      input_receiver_fn_map: dict of `tf.estimator.ModeKeys` to
        `input_receiver_fn` mappings, where the `input_receiver_fn` is a
        function that takes no argument and returns the appropriate subclass of
        `InputReceiver`.
      checkpoint_path: The checkpoint path to export.
      save_variables: bool, whether variables should be saved. If `False`, just
        the `tf.MetaGraphDef` will be saved. Note that `save_variables` should
        only be `True` for the first call to this function, and the
        `SavedModelBuilder` will raise an error if that is not the case.
      mode: `tf.estimator.ModeKeys` value indicating which mode will be
        exported.
      export_tags: The set of tags with which to save `tf.MetaGraphDef`. If
        `None`, a default set will be selected to matched the passed mode.
      check_variables: bool, whether to check the checkpoint has all variables.
      strip_default_attrs: bool, whether to strip default attributes. This may
        only be True when called from the deprecated V1
        Estimator.export_savedmodel.

    Raises:
      ValueError: if `save_variables` is `True` and `check_variable` is `False`.
    """
    if export_tags is None:
      export_tags = export_lib.EXPORT_TAG_MAP[mode]
    input_receiver_fn = input_receiver_fn_map[mode]

    with tf.Graph().as_default() as g:
      self._create_and_assert_global_step(g)
      tf.compat.v1.random.set_random_seed(self._config.tf_random_seed)

      input_receiver = input_receiver_fn()

      # Call the model_fn and collect the export_outputs.
      estimator_spec = self._call_model_fn(
          features=input_receiver.features,
          labels=getattr(input_receiver, 'labels', None),
          mode=mode,
          config=self.config)

      export_outputs = export_lib.export_outputs_for_mode(
          mode=estimator_spec.mode,
          serving_export_outputs=estimator_spec.export_outputs,
          predictions=estimator_spec.predictions,
          loss=estimator_spec.loss,
          metrics=estimator_spec.eval_metric_ops)

      # Build the SignatureDefs from receivers and all outputs
      signature_def_map = export_lib.build_all_signature_defs(
          input_receiver.receiver_tensors,
          export_outputs,
          getattr(input_receiver, 'receiver_tensors_alternatives', None),
          serving_only=(mode == ModeKeys.PREDICT))

      with tf.compat.v1.Session(config=self._session_config) as session:

        if estimator_spec.scaffold.local_init_op is not None:
          local_init_op = estimator_spec.scaffold.local_init_op
        else:
          local_init_op = tf.compat.v1.train.Scaffold.default_local_init_op()

        # This saver will be used both for restoring variables now,
        # and in saving out the metagraph below. This ensures that any
        # Custom Savers stored with the Scaffold are passed through to the
        # SavedModel for restore later.
        if isinstance(estimator_spec.scaffold.saver, trackable_util.Checkpoint):
          graph_saver = tf.compat.v1.train.Saver(
              var_list=graph_view.ObjectGraphView(
                  estimator_spec.scaffold.saver).frozen_saveable_objects(),
              sharded=True)
        else:
          graph_saver = (
              estimator_spec.scaffold.saver or
              tf.compat.v1.train.Saver(sharded=True))

        if save_variables and not check_variables:
          raise ValueError('If `save_variables` is `True, `check_variables`'
                           'must not be `False`.')
        if check_variables:
          try:
            graph_saver.restore(session, checkpoint_path)
          except tf.errors.NotFoundError as e:
            msg = ('Could not load all requested variables from checkpoint. '
                   'Please make sure your model_fn does not expect variables '
                   'that were not saved in the checkpoint.\n\n'
                   'Encountered error with mode `{}` while restoring '
                   'checkpoint from: `{}`. Full Traceback:\n\n{}').format(
                       mode, checkpoint_path, e)
            raise ValueError(msg)

        # We add the train op explicitly for now, so that we don't have to
        # change the Builder public interface. Note that this is a no-op
        # for prediction, where train_op is None.
        builder._add_train_op(estimator_spec.train_op)  # pylint: disable=protected-access

        meta_graph_kwargs = dict(
            tags=export_tags,
            signature_def_map=signature_def_map,
            assets_collection=tf.compat.v1.get_collection(
                tf.compat.v1.GraphKeys.ASSET_FILEPATHS),
            main_op=local_init_op,
            saver=graph_saver,
            strip_default_attrs=strip_default_attrs)

        if save_variables:
          builder.add_meta_graph_and_variables(session, **meta_graph_kwargs)
        else:
          builder.add_meta_graph(**meta_graph_kwargs)

  def _get_features_from_input_fn(self, input_fn, mode):
    """Extracts the `features` from return values of `input_fn`."""
    result = self._call_input_fn(input_fn, mode)
    result, _, hooks = estimator_util.parse_input_fn_result(result)
    self._validate_features_in_predict_input(result)
    return result, hooks

  def _validate_features_in_predict_input(self, result):
    if not _has_dataset_or_queue_runner(result):
      logging.warning('Input graph does not use tf.data.Dataset or contain a '
                      'QueueRunner. That means predict yields forever. '
                      'This is probably a mistake.')

  def _get_iterator_from_input_fn(self, input_fn, mode, distribution=None):
    """Calls `input_fn` and returns an iterator."""
    if distribution is not None:
      # pylint: disable=g-long-lambda
      iterator = distribution.make_input_fn_iterator(
          lambda input_context: self._call_input_fn(input_fn, mode,
                                                    input_context))
      input_hooks = [
          estimator_util.DistributedIteratorInitializerHook(iterator)
      ]
    else:
      result = self._call_input_fn(input_fn, mode)
      iterator = result.make_initializable_iterator()
      input_hooks = [estimator_util._DatasetInitializerHook(iterator)]  # pylint: disable=protected-access
    return iterator, input_hooks

  def _get_features_and_labels_from_input_fn(self, input_fn, mode):
    """Extracts the `features` and labels from return values of `input_fn`."""
    return estimator_util.parse_input_fn_result(
        self._call_input_fn(input_fn, mode))

  def _extract_batch_length(self, preds_evaluated):
    """Extracts batch length of predictions."""
    batch_length = None
    for key, value in six.iteritems(preds_evaluated):
      batch_length = batch_length or value.shape[0]
      if value.shape[0] != batch_length:
        raise ValueError('Batch length of predictions should be same. %s has '
                         'different batch length than others.' % key)
    return batch_length

  def _extract_keys(self, predictions, predict_keys):
    """Extracts `predict_keys` from `predictions`."""
    if not predict_keys:
      return predictions
    if not isinstance(predictions, dict):
      raise ValueError(
          'predict_keys argument is not valid in case of non-dict predictions.')
    existing_keys = predictions.keys()
    predictions = {
        key: value
        for key, value in six.iteritems(predictions)
        if key in predict_keys
    }
    if not predictions:
      raise ValueError('Expected to run at least one output from %s, '
                       'provided %s.' % (existing_keys, predict_keys))
    return predictions

  def _create_global_step(self, graph):
    """Creates the global step tensor in graph.

    The global step tensor must be an integer type with name 'global_step' and
    be added to the collection `tf.GraphKeys.GLOBAL_STEP`.

    Args:
      graph: The graph in which to create the global step tensor.

    Returns:
      The global step `tf.Tensor`.
    """
    return tf.compat.v1.train.create_global_step(graph)

  def _create_and_assert_global_step(self, graph):
    """Creates and asserts properties of the global step.

    Args:
      graph: The graph in which to create the global step tensor.

    Returns:
      The global step `tf.Tensor`.
    """
    step = self._create_global_step(graph)
    assert step is tf.compat.v1.train.get_global_step()
    assert step.dtype.is_integer
    return step

  def _call_input_fn(self, input_fn, mode, input_context=None):
    """Calls the input function.

    Args:
      input_fn: The input function.
      mode: `tf.estimator.ModeKeys`

    Returns:
      The return value of the passed `input_fn`, which should be one of:

        * A 'tf.data.Dataset' object: Outputs of `Dataset` object must be a
          tuple `(features, labels)` with same constraints as below.
        * A tuple `(features, labels)`: Where `features` is a `Tensor` or a
          dictionary of string feature name to `Tensor` and `labels` is a
          `Tensor` or a dictionary of string label name to `Tensor`. Both
          `features` and `labels` are consumed by `model_fn`. They should
          satisfy the expectation of `model_fn` from inputs.

    Raises:
      ValueError: if `input_fn` takes invalid arguments.
    """
    input_fn_args = function_utils.fn_args(input_fn)
    kwargs = {}
    if 'mode' in input_fn_args:
      kwargs['mode'] = mode
    if 'params' in input_fn_args:
      kwargs['params'] = self.params
    if 'config' in input_fn_args:
      kwargs['config'] = self.config
    if input_context and 'input_context' in input_fn_args:
      tf.compat.v1.logging.info(
          'The `input_fn` accepts an `input_context` which will '
          'be given by DistributionStrategy')
      kwargs['input_context'] = input_context
    with tf.compat.v1.device('/cpu:0'):
      return input_fn(**kwargs)

  def _call_model_fn(self, features, labels, mode, config):
    """Calls model function.

    Args:
      features: features dict.
      labels: labels dict.
      mode: `tf.estimator.ModeKeys`
      config: `tf.estimator.RunConfig`

    Returns:
      An `tf.estimator.EstimatorSpec` object.

    Raises:
      ValueError: if `model_fn` returns invalid objects.
    """
    model_fn_args = function_utils.fn_args(self._model_fn)
    kwargs = {}
    if 'labels' in model_fn_args:
      kwargs['labels'] = labels
    else:
      if labels is not None:
        raise ValueError(
            'model_fn does not take labels, but input_fn returns labels.')
    if 'mode' in model_fn_args:
      kwargs['mode'] = mode
    if 'params' in model_fn_args:
      kwargs['params'] = self.params
    if 'config' in model_fn_args:
      kwargs['config'] = config

    logging.info('Calling model_fn.')
    model_fn_results = self._model_fn(features=features, **kwargs)
    logging.info('Done calling model_fn.')

    if not isinstance(model_fn_results, model_fn_lib.EstimatorSpec):
      raise ValueError('model_fn should return an EstimatorSpec.')

    return model_fn_results

  def _train_model(self, input_fn, hooks, saving_listeners):
    if self._train_distribution:
      return self._train_model_distributed(input_fn, hooks, saving_listeners)
    else:
      return self._train_model_default(input_fn, hooks, saving_listeners)

  def _train_model_default(self, input_fn, hooks, saving_listeners):
    """Initiate training with `input_fn`, without `DistributionStrategies`.

    Args:
      input_fn: A function that provides input data for training as minibatches.
      hooks: List of `tf.train.SessionRunHook` subclass instances. Used for
        callbacks inside the training loop.
      saving_listeners: list of `tf.train.CheckpointSaverListener` objects. Used
        for callbacks that run immediately before or after checkpoint savings.

    Returns:
      Loss from training
    """
    worker_hooks = []
    with tf.Graph().as_default() as g, g.device(self._device_fn):
      tf.compat.v1.random.set_random_seed(self._config.tf_random_seed)
      global_step_tensor = self._create_and_assert_global_step(g)

      # Skip creating a read variable if _create_and_assert_global_step
      # returns None (e.g. tf.contrib.estimator.SavedModelEstimator).
      if global_step_tensor is not None:
        training_util._get_or_create_global_step_read(g)  # pylint: disable=protected-access

      features, labels, input_hooks = (
          self._get_features_and_labels_from_input_fn(input_fn, ModeKeys.TRAIN))
      worker_hooks.extend(input_hooks)
      estimator_spec = self._call_model_fn(features, labels, ModeKeys.TRAIN,
                                           self.config)
      global_step_tensor = tf.compat.v1.train.get_global_step(g)
      return self._train_with_estimator_spec(estimator_spec, worker_hooks,
                                             hooks, global_step_tensor,
                                             saving_listeners)

  def _train_model_distributed(self, input_fn, hooks, saving_listeners):
    """Initiate training with `input_fn`, using `DistributionStrategies`.

    Args:
      input_fn: A function that provides input data for training as minibatches.
      hooks: List of `tf.train.SessionRunHook` subclass instances. Used for
        callbacks inside the training loop.
      saving_listeners: list of `tf.train.CheckpointSaverListener` objects. Used
        for callbacks that run immediately before or after checkpoint savings.

    Returns:
      Loss from training
    """
    # pylint: disable=protected-access
    if (hasattr(self._config, '_distribute_coordinator_mode') and
        self._config._distribute_coordinator_mode):  # pylint: disable=protected-access
      distribute_coordinator_training.estimator_train(
          self,
          lambda est, s, train_hooks: est._actual_train_model_distributed(  # pylint: disable=g-long-lambda
              s, input_fn, train_hooks, saving_listeners),
          hooks)
      return self
    else:
      self._config._train_distribute.configure(self._config.session_config)
      return self._actual_train_model_distributed(
          self._config._train_distribute, input_fn, hooks, saving_listeners)
    # pylint: enable=protected-access

  def _actual_train_model_distributed(self, strategy, input_fn, hooks,
                                      saving_listeners):
    """That method that does actual training with distribution strategy."""
    # TODO(sourabhbajaj): Remove this hack once we migrate the other strategies
    # to use the new API
    is_tpu_strategy = strategy.__class__.__name__.startswith('TPUStrategy')

    worker_hooks = []
    with tf.Graph().as_default() as g:
      # We want to create the iterations variable outside the distribution scope
      # as that is just stored on the host and mainly used to drive the loop
      # and doesn't need to be a Mirrored/Device variable.
      if is_tpu_strategy:
        steps_per_run_variable = training.get_or_create_steps_per_run_variable()

      # Set flag on the distribution strategy so that optimizer v1 is
      # distribution aware and scales the losses by number of replicas.
      # This is required only for backward compatibility with estimator and
      # V1 optimizer. TF2 will not do this scaling.
      if hasattr(strategy, '_scale_loss_for_estimator_enabled'):
        scale_ctx = strategy._scale_loss_for_estimator_enabled()  # pylint: disable=protected-access
      else:
        # TODO(psv): Remove this clause after estimator repo gets the
        # distribute library changes related to loss scaling.
        @tf_contextlib.contextmanager
        def nullcontextmanager():
          yield

        scale_ctx = nullcontextmanager()

      with strategy.scope(), scale_ctx:
        tf.compat.v1.random.set_random_seed(self._config.tf_random_seed)
        iterator, input_hooks = self._get_iterator_from_input_fn(
            input_fn, ModeKeys.TRAIN, strategy)
        worker_hooks.extend(input_hooks)
        global_step_tensor = self._create_and_assert_global_step(g)
        # we want to add to the global collection in the main thread not the
        # replica threads.
        tf.compat.v1.add_to_collection(
            training_util.GLOBAL_STEP_READ_KEY,
            strategy.extended.read_var(global_step_tensor))

        if is_tpu_strategy:
          # Create a step_fn from the train_op of grouped_estimator_spec
          def step_fn(ctx, inputs):
            """A single step that is passed to run_on_dataset."""
            if isinstance(inputs, tuple):
              features, labels = inputs
            else:
              features = inputs
              labels = None
            estimator_spec = strategy.extended.call_for_each_replica(
                self._call_model_fn,
                args=(features, labels, ModeKeys.TRAIN, self.config))
            ctx.set_last_step_output(
                name='loss',
                output=estimator_spec.loss,
                reduce_op=_get_loss_reduce_op_for_reporting())
            ctx.set_non_tensor_output(
                name='estimator_spec', output=estimator_spec)
            return estimator_spec.train_op

          # Create new train_op post graph rewrites
          initial_training_loss = tf.constant(1e7)
          ctx = strategy.extended.experimental_run_steps_on_iterator(
              step_fn,
              iterator,
              iterations=steps_per_run_variable,
              initial_loop_values={'loss': initial_training_loss})
          distributed_train_op = ctx.run_op
          loss = ctx.last_step_outputs['loss']
          grouped_estimator_spec = ctx.non_tensor_outputs['estimator_spec']
        else:
          features, labels = estimator_util.parse_iterator_result(
              iterator.get_next())
          grouped_estimator_spec = strategy.extended.call_for_each_replica(
              self._call_model_fn,
              args=(
                  features,
                  labels,  # although this will be None it seems
                  ModeKeys.TRAIN,
                  self.config))
          loss = strategy.reduce(
              _get_loss_reduce_op_for_reporting(),
              grouped_estimator_spec.loss,
              axis=None)
          distributed_train_op = grouped_estimator_spec.train_op

        scaffold = _combine_distributed_scaffold(
            grouped_estimator_spec.scaffold, strategy)

        # TODO(yuefengz): add a test for unwrapping per_device_hooks.
        def get_hooks_from_the_first_device(per_device_hooks):
          return [
              self._train_distribution.experimental_local_results(
                  per_device_hook)[0] for per_device_hook in per_device_hooks
          ]

        training_hooks = get_hooks_from_the_first_device(
            grouped_estimator_spec.training_hooks)
        training_chief_hooks = get_hooks_from_the_first_device(
            grouped_estimator_spec.training_chief_hooks)
        estimator_spec = model_fn_lib.EstimatorSpec(
            mode=grouped_estimator_spec.mode,
            loss=loss,
            train_op=strategy.group(distributed_train_op),
            training_hooks=training_hooks,
            training_chief_hooks=training_chief_hooks,
            scaffold=scaffold)
        return self._train_with_estimator_spec(estimator_spec, worker_hooks,
                                               hooks, global_step_tensor,
                                               saving_listeners)

  def _train_with_estimator_spec_distributed(self, estimator_spec, worker_hooks,
                                             saving_listener):
    """Train a model with the given Estimator Spec and Distribution Strategy."""
    if saving_listener:
      raise ValueError('Saving listenor is not supported by the current '
                       'Distribution Strategies.')
    #TODO: consolidate code duplication in _train_with_estimator_spec
    with training.MonitoredTrainingSession(
        master=self._config.master,
        is_chief=self._config.is_chief,
        checkpoint_dir=self._model_dir,
        scaffold=estimator_spec.scaffold,
        hooks=worker_hooks,
        chief_only_hooks=tuple(estimator_spec.training_chief_hooks),
        save_checkpoint_secs=self._config.save_checkpoints_secs,
        save_checkpoint_steps=self._config.save_checkpoints_steps,
        save_summaries_steps=self._config.save_summary_steps,
        config=self._session_config,
        max_wait_secs=self._config.session_creation_timeout_secs,
        log_step_count_steps=self._config.log_step_count_steps,
        save_graph_def=self._config.checkpoint_save_graph_def) as mon_sess:
      loss = None
      current_step = 0
      while not mon_sess.should_stop():
        current_step += 1
        # just as keras(https://github.com/tensorflow/tensorflow/blob/v2.4.1/tensorflow/python/keras/engine/training.py#L1093),
        # trace should be enabled for every step
        with trace.Trace('train', step_num=current_step, _r=1):
          _, loss = mon_sess.run([estimator_spec.train_op, estimator_spec.loss])
      if current_step == 0:
        tf.compat.v1.logging.warn('Training with estimator made no steps. '
                                  'Perhaps input is empty or misspecified.')
    return loss

  def _train_with_estimator_spec(self, estimator_spec, worker_hooks, hooks,
                                 global_step_tensor, saving_listeners):
    """Train a model with the given Estimator Spec."""
    if (self._warm_start_settings and
        not tf.train.latest_checkpoint(self._model_dir)):
      tf.compat.v1.logging.info('Warm-starting with WarmStartSettings: %s' %
                                (self._warm_start_settings,))
      tf.compat.v1.train.warm_start(*self._warm_start_settings)
    # Check if the user created a loss summary, and add one if they didn't.
    # We assume here that the summary is called 'loss'. If it is not, we will
    # make another one with the name 'loss' to ensure it shows up in the right
    # graph in TensorBoard.
    if not any([
        x.op.name == 'loss' for x in ops.get_collection(ops.GraphKeys.SUMMARIES)
    ]):
      summary.scalar('loss', estimator_spec.loss)
    ops.add_to_collection(ops.GraphKeys.LOSSES, estimator_spec.loss)
    worker_hooks.extend(hooks)
    worker_hooks.append(tf.compat.v1.train.NanTensorHook(estimator_spec.loss))
    if self._config.log_step_count_steps is not None:
      worker_hooks.append(
          tf.compat.v1.train.LoggingTensorHook(
              {
                  'loss': estimator_spec.loss,
                  'step': global_step_tensor
              },
              every_n_iter=self._config.log_step_count_steps))
    worker_hooks.extend(estimator_spec.training_hooks)

    if not (estimator_spec.scaffold.saver or
            tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.SAVERS)):
      tf.compat.v1.add_to_collection(
          tf.compat.v1.GraphKeys.SAVERS,
          tf.compat.v1.train.Saver(
              sharded=True,
              max_to_keep=self._config.keep_checkpoint_max,
              keep_checkpoint_every_n_hours=(
                  self._config.keep_checkpoint_every_n_hours),
              defer_build=True,
              save_relative_paths=True))

    if (self._config.cluster_spec and type(
        self._train_distribution).__name__ in ('CollectiveAllReduceStrategy',
                                               'CollectiveAllReduceStrategyV1',
                                               'MultiWorkerMirroredStrategy')):
      return self._train_with_estimator_spec_distributed(
          estimator_spec, worker_hooks, saving_listeners)

    chief_hooks = []
    all_hooks = worker_hooks + list(estimator_spec.training_chief_hooks)
    saver_hooks = [
        h for h in all_hooks
        if isinstance(h, tf.compat.v1.train.CheckpointSaverHook)
    ]
    if (self._config.save_checkpoints_secs or
        self._config.save_checkpoints_steps):
      if not saver_hooks:
        chief_hooks = [
            tf.compat.v1.train.CheckpointSaverHook(
                self._model_dir,
                save_secs=self._config.save_checkpoints_secs,
                save_steps=self._config.save_checkpoints_steps,
                scaffold=estimator_spec.scaffold,
                save_graph_def=self._config.checkpoint_save_graph_def)
        ]
        saver_hooks = [chief_hooks[0]]
    if saving_listeners:
      if not saver_hooks:
        raise ValueError(
            'There should be a CheckpointSaverHook to use saving_listeners. '
            'Please set one of the RunConfig.save_checkpoints_steps or '
            'RunConfig.save_checkpoints_secs.')
      else:
        # It is expected to have one CheckpointSaverHook. If multiple, we pick
        # up the first one to add listener.
        for listener in saving_listeners:
          # pylint: disable=protected-access
          if listener not in saver_hooks[0]._listeners:
            saver_hooks[0]._listeners.append(listener)
          # pylint: disable=protected-access

    # Add summary hooks to worker 0 if we are running with a master, to ensure
    # that summaries are written at correct intervals even with long-running
    # evaluations.
    save_summary_steps = self._config.save_summary_steps
    log_step_count_steps = self._config.log_step_count_steps

    # Check existence of appropriate cluster spec fields, as well as master and
    # worker nodes. As master also performs evaluation, summary writing must
    # occur on a different node. The presence of a worker is also checked to
    # prevent reassigning hooks for single-replica jobs with just a master node.
    if (self._config.cluster_spec and self._config.cluster_spec.jobs and
        (run_config.TaskType.WORKER in self._config.cluster_spec.jobs) and
        (run_config.TaskType.MASTER in self._config.cluster_spec.jobs)):
      # Update config values to prevent the default hooks from being created on
      # the master or other workers.
      save_summary_steps = 0
      log_step_count_steps = None

      if (self._config.task_type == run_config.TaskType.WORKER and
          self._config.task_id == 0):
        if (self._config.save_summary_steps and
            self._config.save_summary_steps > 0):
          worker_hooks.append(
              tf.compat.v1.train.SummarySaverHook(
                  save_steps=self._config.save_summary_steps,
                  output_dir=self._config.model_dir,
                  scaffold=estimator_spec.scaffold))

        if (self._config.log_step_count_steps and
            self._config.log_step_count_steps > 0):
          worker_hooks.append(
              tf.compat.v1.train.StepCounterHook(
                  every_n_steps=self._config.log_step_count_steps,
                  output_dir=self._config.model_dir))

    with training.MonitoredTrainingSession(
        master=self._config.master,
        is_chief=self._config.is_chief,
        checkpoint_dir=self._model_dir,
        scaffold=estimator_spec.scaffold,
        hooks=worker_hooks,
        chief_only_hooks=(tuple(chief_hooks) +
                          tuple(estimator_spec.training_chief_hooks)),
        save_checkpoint_secs=0,  # Saving is handled by a hook.
        save_summaries_steps=save_summary_steps,
        config=self._session_config,
        max_wait_secs=self._config.session_creation_timeout_secs,
        log_step_count_steps=log_step_count_steps,
        save_graph_def=self._config.checkpoint_save_graph_def) as mon_sess:
      loss = None
      current_step = 0
      while not mon_sess.should_stop():
        current_step += 1
        # just as keras(https://github.com/tensorflow/tensorflow/blob/v2.4.1/tensorflow/python/keras/engine/training.py#L1093),
        # trace should be enabled for every step
        with trace.Trace('train', step_num=current_step, _r=1):
          _, loss = mon_sess.run([estimator_spec.train_op, estimator_spec.loss])
      if current_step == 0:
        tf.compat.v1.logging.warn('Training with estimator made no steps. '
                                  'Perhaps input is empty or misspecified.')
    return loss

  def _evaluate_build_graph(self, input_fn, hooks=None, checkpoint_path=None):
    """Builds the graph and related hooks to run evaluation."""
    tf.compat.v1.random.set_random_seed(self._config.tf_random_seed)
    self._create_and_assert_global_step(tf.compat.v1.get_default_graph())

    if self._eval_distribution:
      (scaffold, evaluation_hooks, input_hooks, update_op, eval_dict) = (
          self._call_model_fn_eval_distributed(input_fn, self.config))
    else:
      (scaffold, evaluation_hooks, input_hooks, update_op, eval_dict) = (
          self._call_model_fn_eval(input_fn, self.config))

    global_step_tensor = tf.compat.v1.train.get_global_step(
        tf.compat.v1.get_default_graph())
    # Call to warm_start has to be after model_fn is called.
    self._maybe_warm_start(checkpoint_path)

    if tf.compat.v1.GraphKeys.GLOBAL_STEP in eval_dict:
      raise ValueError(
          'Metric with name `global_step` is not allowed, because Estimator '
          'already defines a default metric with the same name.')
    eval_dict[tf.compat.v1.GraphKeys.GLOBAL_STEP] = global_step_tensor

    all_hooks = list(input_hooks)
    all_hooks.extend(hooks)
    all_hooks.extend(list(evaluation_hooks or []))
    # New local variables have been added, so update the estimator spec's
    # local init op if it was defined.
    if scaffold and scaffold.local_init_op:
      # Ensure that eval step has been created before updating local init op.
      evaluation._get_or_create_eval_step()  # pylint: disable=protected-access

      scaffold = tf.compat.v1.train.Scaffold(
          local_init_op=tf.group(
              scaffold.local_init_op,
              tf.compat.v1.train.Scaffold.default_local_init_op()),
          copy_from_scaffold=scaffold)

    return scaffold, update_op, eval_dict, all_hooks

  def _call_model_fn_eval(self, input_fn, config):
    """Call model_fn for evaluation and handle return values."""
    features, labels, input_hooks = self._get_features_and_labels_from_input_fn(
        input_fn, ModeKeys.EVAL)

    estimator_spec = self._call_model_fn(features, labels, ModeKeys.EVAL,
                                         config)
    eval_metric_ops = _verify_and_create_loss_metric(
        estimator_spec.eval_metric_ops, estimator_spec.loss)
    update_op, eval_dict = _extract_metric_update_ops(eval_metric_ops)
    return (estimator_spec.scaffold, estimator_spec.evaluation_hooks,
            input_hooks, update_op, eval_dict)

  def _call_model_fn_eval_distributed(self, input_fn, config):
    """Call model_fn in distribution mode and handle return values."""

    iterator, input_hooks = self._get_iterator_from_input_fn(
        input_fn, ModeKeys.EVAL, self._eval_distribution)

    is_tpu_strategy = (
        self._eval_distribution.__class__.__name__.startswith('TPUStrategy'))

    if is_tpu_strategy:
      steps_per_run_variable = training.get_or_create_steps_per_run_variable()

      def step_fn(ctx, inputs):
        """Runs one step of the eval computation and captures outputs."""
        if isinstance(inputs, tuple):
          features, labels = inputs
        else:
          features = inputs
          labels = None
        estimator_spec = self._eval_distribution.extended.call_for_each_replica(
            self._call_model_fn, args=(features, labels, ModeKeys.EVAL, config))
        eval_metric_ops = _verify_and_create_loss_metric(
            estimator_spec.eval_metric_ops, estimator_spec.loss,
            self._eval_distribution)
        update_op, eval_dict = _extract_metric_update_ops(
            eval_metric_ops, self._eval_distribution)
        ctx.set_non_tensor_output(name='estimator_spec', output=estimator_spec)
        ctx.set_non_tensor_output(name='eval_dict', output=eval_dict)
        return update_op

      # TODO(priyag): Fix eval step hook to account for steps_per_run.
      ctx = self._eval_distribution.extended.experimental_run_steps_on_iterator(
          step_fn, iterator, iterations=steps_per_run_variable)
      update_op = ctx.run_op
      eval_dict = ctx.non_tensor_outputs['eval_dict']
      grouped_estimator_spec = ctx.non_tensor_outputs['estimator_spec']
    else:
      features, labels = estimator_util.parse_iterator_result(
          iterator.get_next())
      grouped_estimator_spec = (
          self._eval_distribution.extended.call_for_each_replica(
              self._call_model_fn,
              args=(features, labels, ModeKeys.EVAL, config)))
      eval_metric_ops = _verify_and_create_loss_metric(
          grouped_estimator_spec.eval_metric_ops, grouped_estimator_spec.loss,
          self._eval_distribution)
      update_op, eval_dict = _extract_metric_update_ops(eval_metric_ops,
                                                        self._eval_distribution)

    scaffold = _combine_distributed_scaffold(grouped_estimator_spec.scaffold,
                                             self._eval_distribution)

    def get_hooks_from_the_first_device(per_device_hooks):
      return [
          self._eval_distribution.experimental_local_results(per_device_hook)[0]
          for per_device_hook in per_device_hooks
      ]

    evaluation_hooks = get_hooks_from_the_first_device(
        grouped_estimator_spec.evaluation_hooks)

    return (scaffold, evaluation_hooks, input_hooks, update_op, eval_dict)

  def _evaluate_run(self, checkpoint_path, scaffold, update_op, eval_dict,
                    all_hooks, output_dir):
    """Run evaluation."""
    eval_results = evaluation._evaluate_once(  # pylint: disable=protected-access
        checkpoint_path=checkpoint_path,
        master=self._config.evaluation_master,
        scaffold=scaffold,
        eval_ops=update_op,
        final_ops=eval_dict,
        hooks=all_hooks,
        config=self._session_config)

    current_global_step = eval_results[tf.compat.v1.GraphKeys.GLOBAL_STEP]

    _write_dict_to_summary(
        output_dir=output_dir,
        dictionary=eval_results,
        current_global_step=current_global_step)

    if checkpoint_path:
      _write_checkpoint_path_to_summary(
          output_dir=output_dir,
          checkpoint_path=checkpoint_path,
          current_global_step=current_global_step)

    return eval_results

  def _maybe_warm_start(self, checkpoint_path):
    if not checkpoint_path and self._warm_start_settings:
      tf.compat.v1.logging.info('Warm-starting with WarmStartSettings: %s' %
                                (self._warm_start_settings,))
      tf.compat.v1.train.warm_start(*self._warm_start_settings)

  @deprecation.deprecated(
      None, 'This function has been renamed, use `export_saved_model` instead.')
  def export_savedmodel(self,
                        export_dir_base,
                        serving_input_receiver_fn,
                        assets_extra=None,
                        as_text=False,
                        checkpoint_path=None,
                        strip_default_attrs=False):
    # pylint: disable=line-too-long
    """Exports inference graph as a `SavedModel` into the given dir.

    For a detailed guide, see
    [SavedModel from
    Estimators.](https://www.tensorflow.org/guide/estimator#savedmodels_from_estimators).

    This method builds a new graph by first calling the
    `serving_input_receiver_fn` to obtain feature `Tensor`s, and then calling
    this `Estimator`'s `model_fn` to generate the model graph based on those
    features. It restores the given checkpoint (or, lacking that, the most
    recent checkpoint) into this graph in a fresh session.  Finally it creates
    a timestamped export directory below the given `export_dir_base`, and writes
    a `SavedModel` into it containing a single `tf.MetaGraphDef` saved from this
    session.

    The exported `MetaGraphDef` will provide one `SignatureDef` for each
    element of the `export_outputs` dict returned from the `model_fn`, named
    using the same keys.  One of these keys is always
    `tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY`,
    indicating which signature will be served when a serving request does not
    specify one. For each signature, the outputs are provided by the
    corresponding `tf.estimator.export.ExportOutput`s, and the inputs are always
    the input receivers provided by the `serving_input_receiver_fn`.

    Extra assets may be written into the `SavedModel` via the `assets_extra`
    argument.  This should be a dict, where each key gives a destination path
    (including the filename) relative to the assets.extra directory.  The
    corresponding value gives the full path of the source file to be copied.
    For example, the simple case of copying a single file without renaming it
    is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`.

    Args:
      export_dir_base: A string containing a directory in which to create
        timestamped subdirectories containing exported `SavedModel`s.
      serving_input_receiver_fn: A function that takes no argument and returns a
        `tf.estimator.export.ServingInputReceiver` or
        `tf.estimator.export.TensorServingInputReceiver`.
      assets_extra: A dict specifying how to populate the assets.extra directory
        within the exported `SavedModel`, or `None` if no extra assets are
        needed.
      as_text: whether to write the `SavedModel` proto in text format.
      checkpoint_path: The checkpoint path to export.  If `None` (the default),
        the most recent checkpoint found within the model directory is chosen.
      strip_default_attrs: Boolean. If `True`, default-valued attributes will be
        removed from the `NodeDef`s. For a detailed guide, see [Stripping
        Default-Valued Attributes](
        https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes).

    Returns:
      The path to the exported directory as a bytes object.

    Raises:
      ValueError: if no `serving_input_receiver_fn` is provided, no
      `export_outputs` are provided, or no checkpoint can be found.
    """
    # pylint: enable=line-too-long
    if not serving_input_receiver_fn:
      raise ValueError('An input_receiver_fn must be defined.')

    return self._export_all_saved_models(
        export_dir_base, {ModeKeys.PREDICT: serving_input_receiver_fn},
        assets_extra=assets_extra,
        as_text=as_text,
        checkpoint_path=checkpoint_path,
        strip_default_attrs=strip_default_attrs)


@estimator_export('estimator.Estimator', v1=[])  # pylint: disable=missing-docstring
class EstimatorV2(Estimator):
  __doc__ = Estimator.__doc__

  export_savedmodel = deprecation.hide_attribute_from_api(
      '`Estimator.export_savedmodel` has been deprecated. Please use '
      '`export_saved_model` instead.')

  def _assert_members_are_not_overridden(self):
    """Asserts members of `Estimator` are not overridden."""
    _assert_members_are_not_overridden(EstimatorV2, self)


def _get_loss_reduce_op_for_reporting():
  graph = tf.compat.v1.get_default_graph()
  if getattr(graph, '_is_loss_scaled_by_optimizer', False):  # pylint: disable=protected-access
    return tf.compat.v1.distribute.get_loss_reduction()
  return tf.distribute.ReduceOp.SUM


def _assert_members_are_not_overridden(cls, obj):
  """Assert Estimator methods are not overwritten."""
  # TPUEstimator is special cased (owned by TF).
  if obj.__class__.__name__ == 'TPUEstimator':
    return

  allowed_overrides = set([
      'model_fn', '_create_and_assert_global_step', '_export_all_saved_models',
      '_tf_api_names', '_tf_api_names_v1', '_estimator_api_names',
      '_estimator_api_names_v1', '_estimator_api_constants',
      '_estimator_api_constants_v1', 'latest_checkpoint'
  ])

  estimator_members = set([m for m in dir(cls) if not m.startswith('__')])
  subclass_members = set(obj.__class__.__dict__.keys())
  common_members = estimator_members & subclass_members - allowed_overrides
  overridden_members = [
      m for m in common_members if getattr(cls, m) != getattr(obj.__class__, m)
  ]
  if overridden_members:
    raise ValueError(
        'Subclasses of Estimator cannot override members of Estimator. '
        '{} does override {}'.format(obj.__class__, overridden_members))


def _verify_and_create_loss_metric(eval_metric_ops, loss, distribution=None):
  """Creates a metric for loss and throws an error if one already exists."""
  if model_fn_lib.LOSS_METRIC_KEY in eval_metric_ops:
    raise ValueError(
        'Metric with name "%s" is not allowed, because Estimator ' %
        (model_fn_lib.LOSS_METRIC_KEY) +
        'already defines a default metric with the same name.')

  if distribution is None:
    loss_metric = tf.compat.v1.metrics.mean(loss)
  else:
    loss_metric = distribution.extended.call_for_each_replica(
        tf.compat.v1.metrics.mean, args=(loss,))
  eval_metric_ops[model_fn_lib.LOSS_METRIC_KEY] = loss_metric
  return eval_metric_ops


def maybe_overwrite_model_dir_and_session_config(config, model_dir):
  """Overwrite estimator config by `model_dir` and `session_config` if needed.

  Args:
    config: Original estimator config.
    model_dir: Estimator model checkpoint directory.

  Returns:
    Overwritten estimator config.

  Raises:
    ValueError: Model directory inconsistent between `model_dir` and `config`.
  """

  if config is None:
    config = run_config.RunConfig()
    tf.compat.v1.logging.info('Using default config.')
  if not isinstance(config, run_config.RunConfig):
    raise ValueError(
        'config must be an instance of `RunConfig`, but provided %s.' % config)

  if config.session_config is None:
    session_config = run_config.get_default_session_config()
    config = run_config.RunConfig.replace(config, session_config=session_config)

  model_dir = compat_internal.path_to_str(model_dir)
  if model_dir is not None:
    if (getattr(config, 'model_dir', None) is not None and
        config.model_dir != model_dir):
      raise ValueError(
          '`model_dir` are set both in constructor and `RunConfig`, but with '
          "different values. In constructor: '{}', in `RunConfig`: "
          "'{}' ".format(model_dir, config.model_dir))
  if model_dir:
    config = run_config.RunConfig.replace(config, model_dir=model_dir)
  elif getattr(config, 'model_dir', None) is None:
    model_dir = tempfile.mkdtemp()
    tf.compat.v1.logging.warn('Using temporary folder as model directory: %s',
                              model_dir)
    config = run_config.RunConfig.replace(config, model_dir=model_dir)

  return config


def create_per_replica_ready_for_local_init_op(scaffold):
  """Create a `tf.train.Scaffold.ready_for_local_init_op` inside a replica."""
  if scaffold.ready_for_local_init_op:
    return scaffold.ready_for_local_init_op

  def default_ready_for_local_init_op():
    return tf.compat.v1.report_uninitialized_variables(
        tf.compat.v1.global_variables())

  return tf.compat.v1.train.Scaffold.get_or_default(
      'ready_for_local_init_op', tf.compat.v1.GraphKeys.READY_FOR_LOCAL_INIT_OP,
      default_ready_for_local_init_op)


def _combine_distributed_scaffold(grouped_scaffold, distribution):
  """Combines scaffold(s) returned from `call_for_each_replica`."""

  # TODO(anjalisridhar): Figure out how to resolve the following scaffold
  # parameters: init_feed_dict, init_fn.
  scaffold_list = distribution.experimental_local_results(grouped_scaffold)
  init_feed_dict = [
      s.init_feed_dict for s in scaffold_list if s.init_feed_dict is not None
  ]
  if init_feed_dict:
    init_feed_dict = distribution.group(init_feed_dict)
  else:
    init_feed_dict = None

  init_fn = [
      s._user_init_fn for s in scaffold_list if s._user_init_fn is not None  # pylint: disable=protected-access
  ]
  if init_fn:
    init_fn = init_fn[0]
  else:
    init_fn = None

  init_op = [s.init_op for s in scaffold_list if s.init_op is not None]
  if init_op:
    init_op = distribution.group(init_op)
  else:
    init_op = None

  def _unwrap_and_concat(value):
    value = tf.nest.flatten(distribution.experimental_local_results(value))
    if len(value) != 1:
      return tf.concat(value, 0)
    return value[0]

  ready_op = distribution.extended.call_for_each_replica(
      lambda scaffold: scaffold.ready_op, args=(grouped_scaffold,))
  if ready_op is not None:
    ready_op = _unwrap_and_concat(ready_op)

  ready_for_local_init_op = distribution.extended.call_for_each_replica(
      create_per_replica_ready_for_local_init_op, args=(grouped_scaffold,))
  if ready_for_local_init_op is not None:
    ready_for_local_init_op = _unwrap_and_concat(ready_for_local_init_op)
  else:
    ready_for_local_init_op = None

  local_init_op = [
      s.local_init_op for s in scaffold_list if s.local_init_op is not None
  ]
  if local_init_op:
    local_init_op = distribution.group(local_init_op)
  else:
    local_init_op = None

  summary_op = [s.summary_op for s in scaffold_list if s.summary_op is not None]
  if summary_op:
    summary_op = distribution.group(summary_op)
  else:
    summary_op = None

  savers = [s.saver for s in scaffold_list if s.saver is not None]
  if savers:
    saver = savers[0]
  else:
    saver = None

  scaffold = tf.compat.v1.train.Scaffold(
      init_op=init_op,
      ready_op=ready_op,
      ready_for_local_init_op=ready_for_local_init_op,
      local_init_op=local_init_op,
      summary_op=summary_op,
      saver=saver,
      init_feed_dict=init_feed_dict,
      init_fn=init_fn)
  return scaffold


def _check_checkpoint_available(model_dir):
  latest_path = tf.train.latest_checkpoint(model_dir)
  if not latest_path:
    raise ValueError(
        'Could not find trained model in model_dir: {}.'.format(model_dir))


def _check_hooks_type(hooks):
  """Returns hooks if all are `SessionRunHook`, raises TypeError otherwise."""
  hooks = list(hooks or [])
  for h in hooks:
    if not isinstance(h, tf.compat.v1.train.SessionRunHook):
      raise TypeError('Hooks must be a SessionRunHook, given: {}'.format(h))
  return hooks


def _check_listeners_type(saving_listeners):
  """Check listeners type."""
  listeners = list(saving_listeners or [])
  for l in listeners:
    if not isinstance(l, tf.compat.v1.train.CheckpointSaverListener):
      raise TypeError(
          'saving_listeners must be a list of CheckpointSaverListener, '
          'given: {}'.format(l))
  return listeners


def _get_replica_device_setter(config):
  """Creates a replica device setter if required as a default `device_fn`.

  `Estimator` uses `tf.train.ReplicaDeviceSetter` as a default device placer. It
  sets the distributed related arguments such as number of `ps_replicas` based
  on given `config`.

  Args:
    config: A `tf.estimator.RunConfig` instance.

  Returns:
    A replica device setter, or `None`.
  """
  if config.task_type:
    worker_device = '/job:%s/task:%d' % (config.task_type, config.task_id)
  else:
    worker_device = '/job:worker'

  if config.num_ps_replicas > 0:
    return tf.compat.v1.train.replica_device_setter(
        ps_tasks=config.num_ps_replicas,
        worker_device=worker_device,
        merge_devices=True,
        ps_ops=list(device_setter.STANDARD_PS_OPS),
        cluster=config.cluster_spec)
  else:
    return None


def _verify_model_fn_args(model_fn, params):
  """Verifies `model_fn` arguments."""
  args = set(function_utils.fn_args(model_fn))
  if 'features' not in args:
    raise ValueError('model_fn (%s) must include features argument.' % model_fn)
  if params is not None and 'params' not in args:
    raise ValueError('model_fn (%s) does not include params argument, '
                     'but params (%s) is passed to Estimator.' %
                     (model_fn, params))
  if params is None and 'params' in args:
    tf.compat.v1.logging.warn(
        'Estimator\'s model_fn (%s) includes params '
        'argument, but params are not passed to Estimator.', model_fn)
  non_valid_args = list(args - _VALID_MODEL_FN_ARGS)
  if non_valid_args:
    raise ValueError('model_fn (%s) has following not expected args: %s' %
                     (model_fn, non_valid_args))


def _load_global_step_from_checkpoint_dir(checkpoint_dir):
  try:
    checkpoint_reader = tf.compat.v1.train.NewCheckpointReader(
        tf.train.latest_checkpoint(checkpoint_dir))
    return checkpoint_reader.get_tensor(tf.compat.v1.GraphKeys.GLOBAL_STEP)
  except:  # pylint: disable=bare-except
    return 0


def _extract_metric_update_ops(eval_dict, distribution=None):
  """Separate update operations from metric value operations."""
  update_ops = []
  value_ops = {}
  # Sort metrics lexicographically so graph is identical every time.
  for name, value in sorted(six.iteritems(eval_dict)):
    value_ops[name] = value[0]
    update_ops.append(
        distribution.group(value[1]) if distribution else value[1])

  update_op = tf.group(*update_ops) if update_ops else None
  return update_op, value_ops


def _dict_to_str(dictionary):
  """Get a `str` representation of a `dict`.

  Args:
    dictionary: The `dict` to be represented as `str`.

  Returns:
    A `str` representing the `dictionary`.
  """
  return ', '.join('%s = %s' % (k, v)
                   for k, v in sorted(six.iteritems(dictionary))
                   if not isinstance(v, six.binary_type))


def _write_dict_to_summary(output_dir, dictionary, current_global_step):
  """Writes a `dict` into summary file in given output directory.

  Args:
    output_dir: `str`, directory to write the summary file in.
    dictionary: the `dict` to be written to summary file.
    current_global_step: `int`, the current global step.
  """
  tf.compat.v1.logging.info('Saving dict for global step %d: %s',
                            current_global_step, _dict_to_str(dictionary))
  summary_writer = tf.compat.v1.summary.FileWriterCache.get(output_dir)
  summary_proto = summary_pb2.Summary()
  for key in dictionary:
    if dictionary[key] is None:
      continue
    if key == 'global_step':
      continue
    if (isinstance(dictionary[key], np.float32) or
        isinstance(dictionary[key], float)):
      summary_proto.value.add(tag=key, simple_value=float(dictionary[key]))
    elif (isinstance(dictionary[key], np.int64) or
          isinstance(dictionary[key], np.int32) or
          isinstance(dictionary[key], int)):
      summary_proto.value.add(tag=key, simple_value=int(dictionary[key]))
    elif isinstance(dictionary[key], six.binary_type):
      try:
        summ = summary_pb2.Summary.FromString(dictionary[key])
        for i, _ in enumerate(summ.value):
          summ.value[i].tag = '%s/%d' % (key, i)
        summary_proto.value.extend(summ.value)
      except message.DecodeError:
        tf.compat.v1.logging.warn(
            'Skipping summary for %s, cannot parse string to Summary.', key)
        continue
    elif isinstance(dictionary[key], np.ndarray):
      value = summary_proto.value.add()
      value.tag = key
      value.node_name = key
      tensor_proto = tf.make_tensor_proto(dictionary[key])
      value.tensor.CopyFrom(tensor_proto)
      # pylint: disable=line-too-long
      tf.compat.v1.logging.info(
          'Summary for np.ndarray is not visible in Tensorboard by default. '
          'Consider using a Tensorboard plugin for visualization (see '
          'https://github.com/tensorflow/tensorboard-plugin-example/blob/master/README.md'
          ' for more information).')
      # pylint: enable=line-too-long
    else:
      tf.compat.v1.logging.warn(
          'Skipping summary for %s, must be a float, np.float32, np.int64, '
          'np.int32 or int or np.ndarray or a serialized string of Summary.',
          key)
  summary_writer.add_summary(summary_proto, current_global_step)
  summary_writer.flush()


def _write_checkpoint_path_to_summary(output_dir, checkpoint_path,
                                      current_global_step):
  """Writes `checkpoint_path` into summary file in the given output directory.

  Args:
    output_dir: `str`, directory to write the summary file in.
    checkpoint_path: `str`, checkpoint file path to be written to summary file.
    current_global_step: `int`, the current global step.
  """

  checkpoint_path_tag = 'checkpoint_path'

  tf.compat.v1.logging.info('Saving \'%s\' summary for global step %d: %s',
                            checkpoint_path_tag, current_global_step,
                            checkpoint_path)
  summary_proto = summary_pb2.Summary()
  summary_proto.value.add(
      tag=checkpoint_path_tag,
      tensor=tf.make_tensor_proto(checkpoint_path, dtype=tf.dtypes.string))
  summary_writer = tf.compat.v1.summary.FileWriterCache.get(output_dir)
  summary_writer.add_summary(summary_proto, current_global_step)
  summary_writer.flush()


def _has_dataset_or_queue_runner(maybe_tensor):
  """Returns `True` if `Dataset` or `QueueRunner` has been used."""
  # Check TF dataset first. Here, we use a simple algorithm to check the top
  # level Tensors only, which should be sufficient for most users.
  tensors = [
      x for x in tf.nest.flatten(maybe_tensor) if isinstance(x, tf.Tensor)
  ]
  if any([t.op.type == 'IteratorGetNext' for t in tensors]):
    return True

  # Now, check queue.
  return tf.compat.v1.get_default_graph().get_collection(
      tf.compat.v1.GraphKeys.QUEUE_RUNNERS)


VocabInfo = tf.compat.v1.train.VocabInfo  # pylint: disable=invalid-name
estimator_export('estimator.VocabInfo')(VocabInfo)


@estimator_export('estimator.WarmStartSettings')
class WarmStartSettings(
    collections.namedtuple('WarmStartSettings', [
        'ckpt_to_initialize_from',
        'vars_to_warm_start',
        'var_name_to_vocab_info',
        'var_name_to_prev_var_name',
    ])):
  """Settings for warm-starting in `tf.estimator.Estimators`.

  Example Use with canned `tf.estimator.DNNEstimator`:

  ```
  emb_vocab_file = tf.feature_column.embedding_column(
      tf.feature_column.categorical_column_with_vocabulary_file(
          "sc_vocab_file", "new_vocab.txt", vocab_size=100),
      dimension=8)
  emb_vocab_list = tf.feature_column.embedding_column(
      tf.feature_column.categorical_column_with_vocabulary_list(
          "sc_vocab_list", vocabulary_list=["a", "b"]),
      dimension=8)
  estimator = tf.estimator.DNNClassifier(
    hidden_units=[128, 64], feature_columns=[emb_vocab_file, emb_vocab_list],
    warm_start_from=ws)
  ```

  where `ws` could be defined as:

  Warm-start all weights in the model (input layer and hidden weights).
  Either the directory or a specific checkpoint can be provided (in the case
  of the former, the latest checkpoint will be used):

  ```
  ws = WarmStartSettings(ckpt_to_initialize_from="/tmp")
  ws = WarmStartSettings(ckpt_to_initialize_from="/tmp/model-1000")
  ```

  Warm-start only the embeddings (input layer):

  ```
  ws = WarmStartSettings(ckpt_to_initialize_from="/tmp",
                         vars_to_warm_start=".*input_layer.*")
  ```

  Warm-start all weights but the embedding parameters corresponding to
  `sc_vocab_file` have a different vocab from the one used in the current
  model:

  ```
  vocab_info = tf.estimator.VocabInfo(
      new_vocab=sc_vocab_file.vocabulary_file,
      new_vocab_size=sc_vocab_file.vocabulary_size,
      num_oov_buckets=sc_vocab_file.num_oov_buckets,
      old_vocab="old_vocab.txt"
  )
  ws = WarmStartSettings(
      ckpt_to_initialize_from="/tmp",
      var_name_to_vocab_info={
          "input_layer/sc_vocab_file_embedding/embedding_weights": vocab_info
      })
  ```

  Warm-start only `sc_vocab_file` embeddings (and no other variables), which
  have a different vocab from the one used in the current model:

  ```
  vocab_info = tf.estimator.VocabInfo(
      new_vocab=sc_vocab_file.vocabulary_file,
      new_vocab_size=sc_vocab_file.vocabulary_size,
      num_oov_buckets=sc_vocab_file.num_oov_buckets,
      old_vocab="old_vocab.txt"
  )
  ws = WarmStartSettings(
      ckpt_to_initialize_from="/tmp",
      vars_to_warm_start=None,
      var_name_to_vocab_info={
          "input_layer/sc_vocab_file_embedding/embedding_weights": vocab_info
      })
  ```

  Warm-start all weights but the parameters corresponding to `sc_vocab_file`
  have a different vocab from the one used in current checkpoint, and only
  100 of those entries were used:

  ```
  vocab_info = tf.estimator.VocabInfo(
      new_vocab=sc_vocab_file.vocabulary_file,
      new_vocab_size=sc_vocab_file.vocabulary_size,
      num_oov_buckets=sc_vocab_file.num_oov_buckets,
      old_vocab="old_vocab.txt",
      old_vocab_size=100
  )
  ws = WarmStartSettings(
      ckpt_to_initialize_from="/tmp",
      var_name_to_vocab_info={
          "input_layer/sc_vocab_file_embedding/embedding_weights": vocab_info
      })
  ```

  Warm-start all weights but the parameters corresponding to `sc_vocab_file`
  have a different vocab from the one used in current checkpoint and the
  parameters corresponding to `sc_vocab_list` have a different name from the
  current checkpoint:

  ```
  vocab_info = tf.estimator.VocabInfo(
      new_vocab=sc_vocab_file.vocabulary_file,
      new_vocab_size=sc_vocab_file.vocabulary_size,
      num_oov_buckets=sc_vocab_file.num_oov_buckets,
      old_vocab="old_vocab.txt",
      old_vocab_size=100
  )
  ws = WarmStartSettings(
      ckpt_to_initialize_from="/tmp",
      var_name_to_vocab_info={
          "input_layer/sc_vocab_file_embedding/embedding_weights": vocab_info
      },
      var_name_to_prev_var_name={
          "input_layer/sc_vocab_list_embedding/embedding_weights":
              "old_tensor_name"
      })
  ```

  Warm-start all TRAINABLE variables:

  ```
  ws = WarmStartSettings(ckpt_to_initialize_from="/tmp",
                         vars_to_warm_start=".*")
  ```

  Warm-start all variables (including non-TRAINABLE):

  ```
  ws = WarmStartSettings(ckpt_to_initialize_from="/tmp",
                         vars_to_warm_start=[".*"])
  ```

  Warm-start non-TRAINABLE variables "v1", "v1/Momentum", and "v2" but not
  "v2/momentum":

  ```
  ws = WarmStartSettings(ckpt_to_initialize_from="/tmp",
                         vars_to_warm_start=["v1", "v2[^/]"])
  ```

  Attributes:
    ckpt_to_initialize_from: [Required] A string specifying the directory with
      checkpoint file(s) or path to checkpoint from which to warm-start the
      model parameters.
    vars_to_warm_start: [Optional] One of the following:

      * A regular expression (string) that captures which variables to
        warm-start (see tf.compat.v1.get_collection).  This expression will only
        consider variables in the TRAINABLE_VARIABLES collection -- if you need
        to warm-start non_TRAINABLE vars (such as optimizer accumulators or
        batch norm statistics), please use the below option.
      * A list of strings, each a regex scope provided to
        tf.compat.v1.get_collection with GLOBAL_VARIABLES (please see
        tf.compat.v1.get_collection).  For backwards compatibility reasons, this
        is separate from the single-string argument type.
      * A list of Variables to warm-start.  If you do not have access to the
        `Variable` objects at the call site, please use the above option.
      * `None`, in which case only TRAINABLE variables specified in
        `var_name_to_vocab_info` will be warm-started.

      Defaults to `'.*'`, which warm-starts all variables in the
      TRAINABLE_VARIABLES collection. Note that this excludes variables such as
      accumulators and moving statistics from batch norm.
    var_name_to_vocab_info: [Optional] Dict of variable names (strings) to
      `tf.estimator.VocabInfo`. The variable names should be "full" variables,
      not the names of the partitions.  If not explicitly provided, the variable
      is assumed to have no (changes to) vocabulary.
    var_name_to_prev_var_name: [Optional] Dict of variable names (strings) to
      name of the previously-trained variable in `ckpt_to_initialize_from`. If
      not explicitly provided, the name of the variable is assumed to be same
      between previous checkpoint and current model.  Note that this has no
      effect on the set of variables that is warm-started, and only controls
      name mapping (use `vars_to_warm_start` for controlling what variables to
      warm-start).
  """

  def __new__(cls,
              ckpt_to_initialize_from,
              vars_to_warm_start='.*',
              var_name_to_vocab_info=None,
              var_name_to_prev_var_name=None):
    if not ckpt_to_initialize_from:
      raise ValueError(
          '`ckpt_to_initialize_from` MUST be set in WarmStartSettings')
    return super(WarmStartSettings, cls).__new__(
        cls,
        ckpt_to_initialize_from,
        vars_to_warm_start,
        var_name_to_vocab_info or {},
        var_name_to_prev_var_name or {},
    )


def _get_default_warm_start_settings(warm_start_from):
  """Returns default `tf.estimator.WarmStartSettings`.

  Args:
    warm_start_from: Either a string representing the filepath of a checkpoint
      or `SavedModel` to initialize from, or an instance of
      `tf.estimator.WarmStartSettings`.

  Returns:
    Either None or an instance of `WarmStartSettings`.

  Raises:
    ValueError: If `warm_start_from` is not `None` but is neither a string nor
    an instance of `WarmStartSettings`.
  """
  if warm_start_from is None:
    return None
  if isinstance(warm_start_from, (six.string_types, six.binary_type)):
    # Infer that this is a SavedModel if export_path +
    # 'variables/variables.index' exists, and if so, construct the
    # WarmStartSettings pointing to the variables path
    # (export_path + 'variables/variables').
    if tf.compat.v1.gfile.Exists(
        os.path.join(
            saved_model_utils.get_variables_dir(warm_start_from),
            tf.compat.as_text('variables.index'))):
      tf.compat.v1.logging.info('Warm-starting from a SavedModel')
      return WarmStartSettings(
          ckpt_to_initialize_from=saved_model_utils.get_variables_path(
              warm_start_from))
    return WarmStartSettings(ckpt_to_initialize_from=warm_start_from)
  elif isinstance(warm_start_from, WarmStartSettings):
    return warm_start_from
  else:
    raise ValueError('warm_start_from must be a string or a WarmStartSettings, '
                     'instead got {}'.format(type(warm_start_from)))
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